
Cryptography for Scalability and Identity
in Blockchain Applications

Hamidreza Khoshakhlagh

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark





Cryptography for Scalability and Identity
in Blockchain Applications

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Hamidreza Khoshakhlagh

May 31, 2022





Abstract

Blockchains are distributed systems of increasing importance. They work by recording
transactions between mutually distrusting parties in an immutable manner and without requiring
a trusted third party. Their benefits, however, come at the expense of privacy and scalability.
The history of all transactions should be exposed to the network making it possible to violate the
privacy and anonymity of parties. Furthermore, verifying transactions requires an excessive
amount of computation, because verification time is not independent of the computation. This
creates a scalability issue.

Several approaches have been proposed so far to address these two challenges. To ensure
privacy, cryptocurrencies like Zerocash provide fully privacy-preserving payments; i.e., they hide
both the transaction value and the identities of sender and receiver. While being a satisfactory
solution for the privacy challenge, such approaches are not compliant with current regulations
which require some form of accountability to prevent misuse of the system. To ensure scalability,
zero-knowledge succinct non-interactive argument systems, or zkSNARKs have been used by
many decentralized systems in the last decade. While being an attractive tool for not only
scalability but also privacy, the security definitions of commonly-used zkSNARKs are either
based on unrealistic trust assumptions, or are formalized without taking real-world scenarios
into account. In this thesis, we show how to overcome the aforementioned shortcomings.

Our first contribution comprises designing a blockchain identity management system that
provides privacy and accountability in a balanced manner. We develop cryptographic mechanisms
that enhance accountability against misuse of the blockchain, while still ensuring privacy.

The second contribution is the study of zkSNARKs with desirable features that significantly
reduce the trust assumptions in the setup phase and ensure security in the strongest (but also
most realistic) setting. Specifically, we show zkSNARKs that enjoy universality and updatability
of the structured reference string (SRS), and further simulation extractability out-of-the-box.

Seeing anonymity as a tool of privacy in blockchain systems, the third result is related to the
task of transferring secrets in the so-called “you only speak once” (YOSO) model, in which the
adversary has strong denial of service (DoS) capabilities and can identify and block parties as
soon as their identity become known by sending a message.

Our fourth contribution is in the domain of predictable arguments. Predictable arguments
are private-coin argument systems where the answer of the prover can be predicted by the
verifier. In this part, we study predictable arguments with additional privacy properties such as
zero-knowledge and witness indistinguishability.
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Resumé

Blockchains er distribuerede systemer af stadig større betydning. De fungerer ved at bogføre
transaktioner blandt parter uden gensidig tillid til hinanden i en "uforanderlig tinglysningsbog"
og opnår dette uden at afhænge af en betroet tredjepart. Deres fordele kommer dog på bekostning
af "privacy" og skalerbarhed: den samlede historie over alle foretaget transaktioner afsløres
overfor netværket, hvilket fører til dårlig anonymitet og "privacy" for brugerne. Dertil kommer
at verifikationen af samtlige transaktioner kræver betydelig regnekraft fordi verifikations tiden
ikke er uafhængig af den underliggende beregnings længe, hvilket forrudsager problemer med
systemets skalerbarhed.

Et antal teknikker er i tidligere litteratur blevet foreslået for at imødegå disse to udfor-
dringer. For at forbedre "privacy" ved at skjule transaktionernes indhold tilbyder kryptovaluta
såsom Zerocash "fully privacy-preserving payments", hvor både beløbet, samt betalerens og
modtagerens identitet skjules fuldstændigt. Mens dette fører til en tilfredsstillende løsning
ud fra et privatlivsmæssigt synspunkt, er sådanne teknikker ikke forenelige med nuværende
lovgivning, som fordre at systemet implementere beskyttelse mod misbrug (eksempelvis "Know
Your Customer"). For at adressere problemerne med skalerbarhed har "zero-knowledge Succinct
Non-interactive ARguments of Knowledge" eller "zkSNARKS" været benyttet af mange decen-
traliserede systemer i løbet af det seneste årti. Tilltrods for at dette værktøj tillader løsniger på
både "privacy" og skalerbarheds problematikkerne, er sikkerhedsdefinitionerne af ofte benyttede
zkSNARKS enten baseret på urealistiske tillidsantagelser eller formaliseret uden at tage højde
for real-world scenarier. I denne afhandling, vil vi redegøre for hvorledes disse begrænsninger
kan overkommes.

Vores første bidrag består i et design af et "blockchain identity management" system der
imødekommer både retten til privatliv og krævet om juridisk ansvar, på en balanceret måde.
Vi udvikler kryptografiske mekanismer der bedre forhindre misbrug, men samtidig beskytter
brugernes privatliv.

Det andet bidrag består i et studie af zkSNARKS med ønskværdige egenskaber der reducere
tillidsantagelserne betydelig og sikre sikkerheden i den stærkeste (men også realistiske) scenario.
Mere specifikt, beskriver vi zkSNARKS der har en universel og opdaterbar "Structured Reference
String" (SRS), samt tillader "simulation extractability".

Ud fra betragtningen af anonymitet som et "privacy tool" i blockchain systemer, omhandler
det tredje resultat overførselen af af hemmeligheder i den såkaldte “You Only Speak Once”
(YOSO) model, hvor angriberen har potente "Denial of Service" (DoS) evner som tillader ham at
blokere parter så snart at deres indentitet bliver kendt efter at havde sendt blot én enkelt besked.

Vores fjerde bidrag er indenfor "predicatable arguments". "Predictable arguments" er
"private-coin" argumenter hvor beviserens svar kan forudsiges af verifieren. I dette afsnit,
betragter vi predicatable arguments med yderligere privacy egenskaber så som "zero-knowledge"
og "witness indistinguishability".
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Chapter 1

Introduction

Thanks to Bitcoin and other cryptocurrencies, distributed ledgers and blockchain has gotten a lot
of attention in recent years. To put it in the simplest terms, a distributed ledger can be seen as a
mechanism that maintains data across a distributed database while ensuring the same view of
data for all honest parties, even in the presence of corrupt parties. Blockchain is most simply
defined as a digitally distributed ledger that records transactions between different parties in a
verifiable manner. It eliminates the need for verification by a central authority (e.g., trusted third
party) by allowing users to maintain a copy of the ledger, and then synchronizing all copies by
means of a consensus algorithm. While digital currency is the most popular, and also the first
implementation of blockchain, the technology can provide many other applications. It enables
smart contracts, decentralized government services, and all types of transactions in a more
efficient and robust manner than the traditional systems that their centralized nature enables
third-parties to collect and control massive amounts of personal data, causing a privacy breach.

Despite the aforementioned benefits, there are several limitations in blockchain technology
that need to be taken into account, the most important ones being privacy and scalability.

Privacy issue
In blockchain, the history of all events should be available for everyone to read and this limits
the applications of this technology. For example, in the first generation of cryptocurrencies
such as Bitcoin and Ethereum, such data availability makes it possible to monitor particular
payment addresses for a long time and then trace any movement, hence violating the privacy and
anonymity of the target user. To ensure privacy and anonymity for their users, new system with
privacy guarantees are proposed [25, 82, 144]. Cryptocurrencies like Zerocash [25] provide
fully privacy-preserving payments; i.e., they hide both the transaction value and the identities of
sender and receiver. Smart contract systems like Hawk [128] enable privacy-preserving state
transitions, where the application’s data is hidden from third parties.

Privacy versus Accountability. Complete privacy and anonymity perfectly reduces the traces
by the system users and therefore is a satisfactory solution for the privacy issue. However, it
hinders the most blockchain use-cases in legislation settings that need some form of accountability.
For example, to identify ill-intentioned individuals who misuse the system by participating
in illegal activities such as trading of illegal substances, tax-evasion, money laundering, etc,
financial institutions must conform with regulations like “Know your customer" (KYC) and
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“Anti-money laundering" (AML) that allow a legal authority to learn transaction details. The
lack of this property in existing privacy-preserving systems in fact explains why traditional
financial institutions have so far not been convinced about the blockchain technology’s potential
in financial services.

The seemingly contradictory requirements of user anonymity, and the aforementioned
regulations at the same time seems like a major hurdle in widespread adoption of the blockchain.
Most existing systems either provide full privacy and anonymity without accountability in mind
(like ZCash [25]), or they are based on approaches that require a single trusted party (i.e., bank)
like [57]. Having a form of accountability and identity management not only ensures anonymity
of honest users, but also opens up the possibility of identifying malicious users who look at
cryptocurrencies as a way of facilitating illegal activities.

Anonymity. While ensuring user privacy in the blockchain setting seems to be straightforward
using known cryptographic techniques, achieving full-anonymity as required in some applications
is challenging. Imagine a blockchain setting with thousands of users that have publicly known
identities and want to perform some computation in the presence of a powerful denial of service
(DoS) adversary. In this setting, the adversary by knowing parties’ identities can block parties as
soon as they execute the protocol. Hence, to carry out the computation securely in the presence
of such adversaries, one requires a new model of communication channels between users in
which parties remain anonymous up until they carry out a task (i.e., speak), and as soon as they
speak again, the adversary can identify and block them.

To capture this setting, the authors in [102] proposed a model, the so-called you only speak
once (YOSO) model, in which the adversary with strong denial of service (DoS) capabilities
monitors a communication network between a large number of one-time stateless parties—so-
called roles in [102]—and mounts a DoS attack on a (role-assigned) machine as soon as it sends
a message.

An interesting technical problem to deal with in the YOSO model is to find a way to map
random unknown machines M to roles R in the protocol. A role can be “party 7 in round 42 of
protocol X” being executed by some yet unknown machine. If it was always known that one
particular machine executes a given role it makes it easy to mount a denial of service attack just
before the role is to be executed. Second, if some future role in the protocol wants to send a
secret message to the machine M which executes a future role R, then we somehow need a public
key of M to become known without the identity of M becoming known. The aspect of how to
make it possible to send a message to a future role without anyone knowing which physical
machine is going to execute the role is called the role assignment (RA) aspect.

Existing solutions for role assignment are all unsatisfactory. One trivial solution is to use
a generic witness encryption scheme [98] for an NP relation that defines the role assignment.
However, existing witness encryption schemes are either based on strong assumptions such as
multilinear maps [98, 100], or rely on heavy tools like indistinguishability obfuscation (iO) [97]
which are currently not well understood.

A simpler (interactive) solution can be based on the approach proposed in [32, 101, 112]
over a public blockchain where a nominated set of parties called committee members keep a
message alive by resharing it from time to time up to the future point where the message is finally
handed out to the receiver. As a more efficient solution, one can also sample a fresh key pair
(skR, pkR) for a PKE scheme, broadcast (R, pkR) on the blockchain and send the secret key skR
to a random M without leaking M’s identity. The public key pkR creates a target-anonymous
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channel to M and allows parties to send any message m to M by posting encryption of m (under
pkR) on the blockchain. The issue with this approach is that it requires a committee who takes
care of key generation and selecting M. Further, they can only be used to select M according to
an already known probability distribution. This signifies that such approaches are not applicable
when the party selection for a given role is w.r.t. a future stake distribution.

Scalability issue
In public blockchain networks where all data are publicly accessible, transactions must be
validated and processed at every node in the network. In other words, to maintain a public
blockchain, each of the thousands of users must first receive and validate every transaction, and
then permanently store them. This raises serious issues in scalability as e.g., clients who want to
catch up on the latest state of the chain should spend significant amount of resources in terms of
computation and bandwidth.

To address scalability issue in blockchain, Succinct Non-interactive ARguments of Knowledge
(SNARKs) have been adopted by many real-world applications such as decentralized systems in
the last decade. Zero-knowledge SNARKs (zkSNARKs) are SNARKs that further ensure privacy
by satisfying a zero-knowledge property. In more details, a zkSNARK is a proof system that
allows a prover to generate short and efficiently verifiable proofs without revealing anything more
than the correctness of a statement. A series of works focused on constructing and implementing
zkSNARKs for blockchain use-cases, such as cryptocurrencies. Zerocash [25] showed how to
use zkSNARKs in distributed ledgers to achieve privacy-preserving digital payment systems.

Some examples of practical use of zkSNARKs are in the context of Zcash or in Ethereum
system1 for boosting the privacy and scalability of smart contracts. A different important
SNARK application in blockchain is the Filecoin System2 that implements a decentralized
storage solution by means of Proof of Space via SNARKs. It is important to note that in all these
usages, proofs are posted on the public chain so that any user can check that a statement is true
(e.g., validity of a transaction, claims of storage etc.), while ideally expending few resources.

Despite their massive adoption in practice, zkSNARK schemes used today are still not well
adapted or defined accordingly for the needs of such applications. More concretely, the security
definitions are based on unrealistic trust requirements or are formalized without taking into
consideration real-world scenarios. Most SNARK schemes require the generation of trusted
setups which are hard to consider in practice. Another concern is that classical soundness
definitions for SNARKs are not adapted to the decentralized scenarios, so there is still the
need to handle additional security requirements, e.g. non-malleability of proofs is achieved
by composing SNARKs with additional signature schemes. This introduces another concern:
composing SNARKs with other cryptographic primitives had been shown not always to be
secure [36, 85]. When using SNARKs in larger cryptographic protocols in real-world scenarios,
adversarial provers may get additional information which can contribute to the generation of
cheating proofs. To address this problem, stronger, and more useful, definitions of proof of
knowledge were defined in the literature, but they also introduce other subtleties.

1Zcash https://z.cash/, Ethereum https://ethereum.org
2Filecoin, https://filecoin.io
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Simulation extractability. Most zkSNARKs are shown to satisfy a standard knowledge
soundness property. However, deployments of zkSNARKs in real-world applications require a
stronger property – simulation-extractability (SE). This is because, in practice, an adversary
against the zkSNARK has access to proofs provided by other parties using the same zkSNARK.
For instance, in applications of zkSNARKs in privacy-preserving blockchains, proofs are posted
on the chain for all blockchain-participants to see. Therefore, it is necessary for a zero-knowledge
proof system to be resilient against adversaries that additionally get to see proofs generated by
different parties before trying to forge.

Related Work. There exist many results on non-interactive zero-knowledge proofs (NIZKs)
with simulation extractability. Groth [114] observed that a (black-box) SE NIZK is universally-
composable (UC) [51]. In [78], Dodis et al. introduced a notion of (black-box) true simulation
extractability and showed that this property is necessary for NIZKs to be UC-secure. In the context
of zkSNARKs, Groth and Maller [117] proposed the first SE zkSNARK. Kosba’s et al. [127]
gave a general transformation from a NIZK to a black-box SE NIZK. Their transformation works
also for zkSNARKs, although succinctness is not preserved anymore. In another transformation
recently proposed by Abdolmaleki et al. [5], the authors show how to obtain non-black-box
simulation extractability that preserves succinctness of the argument as well. By introducing
minor modifications to the zkSNARK construction of [116] and making stronger assumptions,
the authors of [39] showed that the resulting zkSNARK is SE. Recently, the work of [16] showed
that the original Groth’s proof system in [116] is weakly SE.

The challenge in the updatable SRS setting. One of the downsides of efficient zkSNARKs
such as [72, 99, 115, 116, 129, 130, 141] is that they require a trusted setup, wherein a structured
reference string (SRS) should be generated by a trusted party. This assumption, however, is
not well founded in practice; if the party who generates the SRS is dishonest, they can produce
proofs of invalid statements. That is, the knowledge soundness breaks down if the trusted setup
assumption does not hold. To address this challenge, Groth et al [120] proposed a setting which
allows parties – provers and verifiers – to take a current SRS and update it to a new SRS by
contributing to its randomness in a verifiable way. The guarantee in this updatable setting is that
knowledge soundness holds as long as one of the parties who updates the SRS is honest. The
SRS is also universal, in that it does not depend on the relation to be proved but only on an upper
bound in the size of the statements. While the SNARK of [120] is inefficient, as the SRS length
is quadratic in the size of the statement, soon after, Maller et al. in [132] proposed Sonic the first
universal zkSNARK with updatable and linear size SRS. Subsequently, Gabizon et al. designed
Plonk [91] which currently is the most efficient updatable universal zkSNARK. Independently,
Chiesa et al. [62] proposed Marlin with comparable efficiency to Plonk.

The notion of simulation-extractability for zkSNARKs which is well motivated in practice
has not been studied in this updatable setting. As it turns out, defining SE for updatable SRS
zkSNARKs requires some care. Since the SRS is being continually updated, it is possible for
the adversary to see proofs with respect to different SRS’es before attempting to forge a proof
with respect to a current SRS. A definition of SE in the updatable setting should hence take into
account this additional power of the adversary and clarify with respect to which SRS (or SRS’es)
the simulated proofs are generated and given to the adversary. This is not captured by existing
definitions of SE.
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Chapter 2

Our Contributions

This chapter outlines the main results of this thesis. The thesis is based on four papers [49, 71,
93, 124] that were written during my doctorate.

Our contributions can be summarized as follows:

• Balancing Privacy and Accountability in Blockchain [71]. This work proposes a novel
design for identity management in Blockchain systems. The goal of the design is to
develop cryptographic mechanisms that enhance accountability against misuse of the
blockchain, while still ensuring privacy. My contribution to this paper was the security
analysis of the construction in the Universal Composability (UC) framework.

• What Makes Fiat–Shamir zkSNARKs (Updatable SRS) Simulation Extractable? [93]. In
this work, we study the notion of (updatable) simulation extractability for multi-message
protocols that are in the random oracle model (ROM) and use a structured reference
string (SRS) in the updatable setting. We show sufficient conditions for compiling such
interactive protocols into simulation-extractable NIZK proof systems via the Fiat–Shamir
transformation.

• Encryption to the Future [49]. This work investigates the problem of role assignment in
the YOSO model [102]. In this work, we initiate the study of Encryption to the Future
(EtF) as a cryptographic primitive and study how to encrypt to a future role with a strong
security guarantee.

• (Commit-and-Prove) Predictable Arguments with Privacy [124]. This work studies
predictable arguments with privacy properties such as zero-knowledge and witness
indistinguishability. It also proposes a relaxed notion of predictability called commit-and-
prove predictable arguments (CPPA), where all but the first message of the prover can be
predicted. By the fact that predictable arguments and witness encryption schemes are
equivalent notions, CPPA can be seen as a variant of witness encryption we introduce
in [49] that provides decryptor’s privacy as well.

In the rest of this section, we dive a bit more in-depth into the details of these works. The
chapter concludes with a short overview of other research projects I have done during my PhD
study and a short section introducing general notation used in this thesis.
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2.1 Chapter 3: Balancing Privacy and Accountability in
Blockchain Identity Management

In this section, we summarize our results on balancing privacy and accountability in blockchain
identity management presented in [70, 71].

The main goal of this work is to answer the question of how to making a balance between
privacy and accountability in blockchain systems. To this end, the work proposes a new design
of an identity layer that provides privacy for the users—that is, no one can learn the identity of
the account owners by observing the network transactions. Further, it achieves accountability;
i.e., in the presence of reasonable suspicion, authorized parties can revoke the anonymity of the
account owners and access to the history of their transactions.

The proposed identity management system involves three players: 1. Account Holders
(AH) as network participants who are interested in creating accounts on the blockchain and
performing transactions. 2. Identity Providers (IP) as authorized parities who verify and store
the identity and credentials of account holders. And 3. Anonymity Revokers (AR) as another type
of authorized parities who can—if more than a threshold—revoke the anonymity of suspicious
account holders. To limit the number of accounts an AH can open, the system defines a parameter
MaxACC as the maximum number of possible accounts for every AH and forces the AH to use an
account identifier RegIDACCi

for its i-th account that is derived from a PRF applied to integer
1 ≤ i ≤ MaxACC. To this end, the AH, in an initial registration with the IP, selects a PRF key K
and sends a threshold encryption of K (under AR’s public keys) to the IP. This ciphertext can
later be decrypted by a sufficient number of ARs and obviously allows them to learn all the
accounts belonging to a suspicious AH. After the initial registration with an IP, account holders
can non-interactively create accounts. An account includes some data from the AH such as a
threshold encryption of the AH’s public key (also stored with the IP at registration time) and
zero-knowledge proofs that attest the attributes the AH has chosen to publish in the account have
been signed by an IP, and that the account identifier has been computed correctly. An account
also includes various account-specific public keys that allow the AH to perform anonymous
transactions in the network. In case of suspicion to an account (e.g., account being used for
fraudulent purposes), the encrypted account information can be decrypted by a qualified set of
the ARs who can then link the account to an AH registered with an IP.

In our construction, we use Pedersen commitments [143] for the underlying commitment
scheme and Dodis-Yampolskiy PRF [77] to generate account identifiers. While this PRF is
secure only for small domains, it is sufficient for our design as the maximum number of accounts
an AH can open is upper-bounded by a constant MaxACC. We use Pointcheval-Sanders (PS) blind
signature scheme [145] which allows an IP to issue credentials to AHs. To encrypt field-element
plaintexts so that proving statements about the message is easy using Σ-protocols, we use CL
encryption scheme [54]. Despite having Elgamal-like structure, this scheme is different from
Elgamal encryption, where only limited-size plaintexts can be decrypted efficiently. This useful
property will also be used in our construction of black-box extractable (succinct) NIZK proofs in
the CRS model, wherein the prover CL encrypts the witness under a public key that is part of the
CRS. In particular, while our generic lifting transform of Fiat-Shamir NIZKs for DL-languages
into UC NIZKs is a folklore technique [75], using CL encryption scheme is novel to the best of
our knowledge. Finally, we use techniques related to zkSNARKs on committed/signed messages
in the spirit of [9, 48]. Such techniques allow us to use SNARKs only on small circuits, thus
achieving much better efficiency compared to naive approach of converting our large statements
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(e.g, group operations) into a Boolean circuit to be evaluated inside the SNARK.
We prove the security of our constructions in the Universal Composability (UC) framework,

where either any number of account holders are actively corrupt, or the identity providers are
semi-honest corrupt. Depending on the particular configuration, the system can tolerate different
corruption levels among the anonymity revokers. That is, it provides security in the presence of
actively corrupt users and a threshold number of passively corrupt anonymity revokers; or, in the
presence of passively corrupt identity-providers and a threshold number of passively corrupt
anonymity revokers.
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2.2 Chapter 4: What Makes Fiat–Shamir zkSNARKs
(Updatable SRS) Simulation Extractable?

This section summarizes our results on simulation extractability of Fiat-Shamir zkSNARKs in
the updatable setting, presented in [93]. In a nutshell, there exist several approaches to make
current zkSNARKs adequate for real-life deployment among which are simulation extractability
(SE) and updatability. There are zkSNARKs that are SE and zkSNARKs that are updatable
universal. In this work, we study zkSNARKs that enjoy both of these properties. A more detailed
description follows.

Motivated by applications such as privacy-preserving cryptocurrencies [25], and uses in the
context of Zcash, Ethereum system1 for privacy and scalability of smart contracts that demand
short proofs and fast verification, there has been a series of works on constructing zkSNARKs.

While the two aforementioned properties make zkSNARKs useful in real-life system
deployment, e.g. [15, 64, 65, 148, 158], an important question concerns if existing security
models for zkSNARKs are good enough for real world applications. This becomes even more
important when one realizes that zkSNARKs with constant-sized proofs have been constructed
in the common reference string (CRS) model where the CRS used by the parties—i.e. provers
and verifiers—comes with a trapdoor which can be used to break soundness; i.e., a malicious
prover can convince a verifier to accept a false statement. It is therefore very important to make
sure that the CRS trapdoor is not in the possession of a particular party, or has not been leaked
by the CRS generator. In the context of distributed systems e.g., blockchain, this becomes even
more challenging where assuming a trusted party for CRS generation conflicts with the whole
purpose of decentralized systems.

The seminal work of Bellare et al. [22] tackled this question and proposed notions of
subversion zero knowledge and subversion soundness which informally state that these properties
hold even when the CRS is generated maliciously. Importantly, they show that that no system
can be simultaneously subversion zero-knowledge and subversion-sound. Abdolmaleki et al. [4],

1Zcash https://z.cash/, Ethereum https://ethereum.org
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and independently Fuchsbauer [88] later showed that the most efficient zkSNARK for QAP2 by
Groth [116] can be made subversion zero-knowledge by making minor modifications to its CRS
and without sacrificing its efficiency.

Although efficient, Groth’s zkSNARK comes with a drawback—the CRS depends on the
relation. That is, to show the correct evaluations of two different arithmetic circuits, one has
to generate the proofs using two different CRS-s, one for each circuit. The aforementioned
troublesomeness of CRS generation in distributed setting makes it very desirable to have a type
of CRS that is circuit-independent. That is, a single CRS is universal and can be utilized for all
circuits of a given size. One of the first such universal zkSNARKs was proposed by Groth et
al. [120] where the proof system, in addition to CRS universality, also ensures a strong security
property called updatable soundness. The notion of updatable soundness captures a setting where
zkSNARK provers and verifiers can update the CRS so that as long as there is at least one honest
CRS updating, the proof system guarantees (knowledge) soundness. While the construction
of [120] comes with a quadratic-size CRS and thus inefficient, updatable universal zkSNARKs
with short CRS such as Sonic proposed by Maller et al. in [132], Plonk proposed by Gabizon et
al. [91], and Marlin proposed by Chiesa et al. [62] were proposed soon enough after this work.
Interestingly, all these works follow a rather modular blueprint that consists of two parts: first,
designing an information theoretic interactive protocol, or more precisely, an algebraic variant
of an Interactive Oracle Proof (IOP). Second, compiling the IOP via a cryptographic tool (i.e.,
polynomial commitment (PC) schemes) to obtain an interactive argument system. This is then
later turned into a SNARK using the Fiat-Shamir transformation in the Random Oracle Model
(ROM).

On the importance of simulation extractability. Although zkSNARKs are shown to satisfy a
(standard) knowledge soundness definition, simulation-extractability (SE) is the property that
should be required from zkSNARKs used in practice. This is since, arguably, in the real life one
simply cannot assume that the adversary who tries to break security of a system does not have
access to any proofs provided by other parties using the same zero-knowledge scheme. On the
contrary, in the most popular applications of zkSNARKs, like privacy-preserving blockchains,
proofs made by all blockchain-participants are usually public. Thus, it is only reasonable to
require a zero-knowledge proof system to be resilient to attacks that utilise proofs generated by
different parties.

There are many results on simulation extractable non-interactive zero-knowledge proofs
(NIZKs). Groth [114] first showed that black-box simulation extractable NIZK is universally-
composable (UC) [51]. In the context of zkSNARKs, Groth and Maller [117] proposed the
first simulation-extractable zkSNARK. Later, Kosba’s et al. [127] gave a general transformation
from a NIZK to a black-box SE NIZK. Applying their transformation to zkSNARKs however
kills succinctness of the proof system. In a recent work, Abdolmaleki et al. [5] showed another
transformation using similar techniques that obtains non-black-box simulation extractability
but also preserves succinctness. Independently, some works has focused on making known
zkSNARKs simulation extractable by adding minor modifications [11, 39].

State of the art—simulation-extractable updatable universal zkSNARKs. There are
zkSNARKs that are simulation-extractable and zkSNARKs that are universal, however there are

2QAP stands for Quadratic Arithmetic Program, and is currently the most efficient representation of arithmetic
circuits for showing their validity.
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no known zkSNARKs that enjoy both of these properties out-of-the-box. Using transformations
described in [5, 127], one can obviously lift a universal zkSNARK to be simulation-extractable,
but such lift comes with either loosing succinctness, or an inevitable efficiency loss. This is true for
updatable zkSNARKs as well. Namely, there is no known (out-of-the-box) simulation-extractable
updatable zkSNARKs. Further, there are no transformations that can take a simulation extractable
zkSNARK and make it updatable (although transformation in [5] preserves updatability).

In this paper we show that a wide class of (computationally) special-sound proofs of
knowledge which have unique response property and are zero-knowledge without requiring
the simulator to use the SRS trapdoor are (non-black-box) simulation-extractable when made
non-interactive by the Fiat–Shamir transform. We prove that three efficient updatable universal
zkSNARKs—Plonk [91], Sonic [132] and Marlin [62]—meet these requirements and conclude
by showing their simulation-extractability.
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2.3 Chapter 5: Encryption to the Future: A Paradigm for
Sending Secret Messages to Future (Anonymous)
Committees

Here, we summarize our results on studying a notion of encryption to the future, presented
in [49].

Traditional cryptographic protocols rely on secure channels between parties with publicly
known identities. While knowing parties’ identities can be advantageous in some aspects, it
allows a mobile adversary to block parties as soon as they execute the protocol. To capture
this setting, the authors in [102] proposed a model, the so-called you only speak once (YOSO)
model, in which the adversary has strong denial of service (DoS) capabilities. The model aims
to capture a setting where the adversary monitors a communication network between a large
number of one-time stateless parties—so-called roles in [102]—and mounts a DoS attack on a
(role-assigned) machine as soon as it sends a message.

An interesting technical problem to deal with in the YOSO model is to find a way to map
random unknown machines M to roles R in the protocol. A role can be “party 7 in round 42 of
protocol X” being executed by some yet unknown machine. If it was always known that one
particular machine executes a given role it makes it easy to mount a denial of service attack just
before the role is to be executed. Second, if some future role in the protocol wants to send a
secret message to the machine M which executes a future role R, then we somehow need a public
key of M to become known without the identity of M becoming known. The aspect of how to
make it possible to send a message to a future role without anyone knowing which physical
machine is going to execute the role is called the role assignment (RA) aspect.
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Limitations of Prior Approaches. Existing solutions for role assignment are all unsatisfactory.
One trivial solution is to use a generic witness encryption scheme [98] for an NP relation
that defines the role assignment. However, existing witness encryption schemes are either
based on strong assumptions such as multilinear maps [98, 100], or rely on heavy tools like
indistinguishability obfuscation (iO) [97] which are currently not well understood.

In the case of RA with short future horizon, simpler (committee-based) solutions can be
based on the approach proposed in [32, 101] over a public blockchain where a nominated set
of parties, called committee members, assist in the role assignment process. For RA with long
future horizon, [112] constructed a flavour of witness encryption on top of a blockchain where
successive committees carry the ciphertext into the future.

The main issue with earlier approaches is the use of auxiliary committees which can add a
significant communication overhead. This is often undesired in particular in a blockchain setting
where resources are scarce.

Our Solutions. We investigate the problem of role assignment and study how to encrypt
to a future role with strong security properties. Towards this goal, we first introduce a new
primitive called Encryption to the Future (EtF) in the context of an underlying blockchain,
where the encryption is towards parties selected at arbitrary points in the future. We show
the strength of general EtF (long future horizon) as a primitive by proving that it implies a
flavour of witness encryption for NP. We then weaken the definition and allow limited access to
auxiliary committees on the blockchain such that committees transfer only a very small state.
In this setting, we propose constructions of EtF based on a weaker primitive called Encryption
to the Current Winner (ECW) for the setting with short future horizon. An ECW is defined as
a relaxation of EtF, where the receiver of the message is determined according to the current
state of the blockchain, i.e., selecting the receiver is based on a distribution that is known at the
time of encryption. We give a construction of ECW based on standard assumptions (Oblivious
Transfer and Privacy-free Garbled Circuits) that improves over the previous results [32, 101, 102]
and then show our transformation that compiles any ECW into an EtF when given access to an
auxiliary committee.
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2.4 Chapter 6: (Commit-and-Prove) Predictable Arguments
with Privacy

In this section, we summarize our results on privacy-preserving predictable arguments presented
in [124].

The main goal of this work is to study predictable arguments (PA) [79] and witness
encryption (WE) [98] schemes with privacy properties, namely zero-knowledge and witness-
indistinguishability. A predictable arguments (PA) is a type of private-coin argument system
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where the answer of the prover can be predicted by the verifier. That is, given the honest verifier’s
(private) random coins, one can compute the prover’s answers in advance. The prover in such
arguments is deterministic and to convince the verifier, they must be consistent with the “unique”
accepting transcript throughout the entire protocol. Surprisingly, the notion of predictable
arguments is closely related (and in fact equivalent) to witness encryption schemes. To build PA
from WE, one can encrypt a random string r using the WE scheme and ask the prover to return
r. Vice versa, one can build WE from PA by xor-ing the (predictable) answer with the plaintext.

Motivated by the above discussion, we study these two notions with privacy properties. In
the context of witness encryption, such schemes are useful for applications where in addition to
standard properties, one also requires some level of privacy for the decrypting party who owns a
valid witness for the statement used in the encryption process. We demonstrate the usefulness
of WE schemes with such decryption privacy properties by showing their application in dark
pools and over-the-counter markets in which an investor (who plays the role of encrypting party
here) is interested to communicate with only those trading parties (potential decrypting parties)
whose financial conditions satisfy some constraint. Compared to the existing construction
of zero-knowledge PA in [79], we give more efficient construction for a limited class of NP
languages, namely linear languages. Next, we answer the open problem of constructing witness
indistinguishable (WI) predictable argument in the plain model proposed in [79]. We show a
transformation that converts a PA into a WI-PA still in the plain model. To that end, we use a
non-interactive WI proof system as an ingredient by which the verifier convinces the prover that
their challenge has been computed correctly. The prover first checks if the NIWI proof verifies
and if so, computes the predicted answer as before.

Commit-and-Prove Predictable Arguments. While it has already been shown that general-
purpose PA (or WE) is a powerful notion and can be used to construct several cryptographic
primitives, existing constructions rely on very strong assumptions such as multilinear maps [98,
100] or indistinguishability obfuscation (iO) [97], not being yet sufficiently robust. In fact, there
are evidences that assert unlikeliness of constructing strong versions of these primitives for all
NP languages (yet alone schemes that provides privacy as well) 3.

To deal with the difficulty of building these primitives generally, we propose an alternative
weaker notion of predictability called Commit-and-Prove Predictable Argument (CPPA), where
except the first message of the prover, all the prover’s responses can be predicted. While it is
not hard to show that this notion is pretty much equivalent to the relaxed notion of WE (called
cWE) in Chapter 5, here we are only interested in CPPAs with privacy guarantees, whereas
in Chapter 5, privacy of sender’s input is not a requirement and in some sense is an overkill for
the concerned applications. We give a construction of efficient zero-knowledge CPPAs in the
non-programmable random oracle model for the class of all polynomial-size circuits based on
the three-round zero-knowledge argument of [92].
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3For example, the seminal work of Garg et al. [98] shows that the existence of statistically-sound variant of
these primitives for an NP-complete language implies that NP ⊆ AM ∪ co-AM, in turn implying the collapse of
the polynomial hierarchy.
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2.5 Other Contributions
Apart from the aforementioned contributions described as the main content of this thesis, I have
also worked on the following results.

2.5.1 SNARK-related Projects
• In [46, 47], we model and construct a new primitive called Succinct Publicly-Certifiable

(SPuC) proof systems, in which a party can prove knowledge of a witness by publishing
a partial (designated-verifier) proof; the latter can then be certified by a committee
sharing a secret in a non-interactive manner so that any party in the system can now
publicly verify the proof through its certificates. Our model has practical applications
in blockchains where there exist committees sharing a secret and parties are required to
prove knowledge of a solution to some puzzle. The model can be also seen as a compiler
that transforms designated-verifier SNARKs into succinct proof systems with a flavor of
public-verifiability.

• In [50], we investigate theoretical barriers for succinct non-interactive arguments (SNARGs)
by showing new negative and positive results related to extractability and to the prepro-
cessing model. In particular, we first show the impossibility of having black-box SNARKs
in the adaptive setting in the standard model. Next, we give positive results for the same
question but in the non-adaptive setting by showing black-box SNARKs for a subset of NP,
namely FewP, wherein statements have at most a polynomial number of valid witnesses.
Lastly, we extend the Gentry-Wichs result to the SNARGs in the preprocessing model.

2.5.2 Smooth Projective Hash Functions
• In [6, 7], we study smooth projective hash functions (SPHFs) in the subversion setting.

We define and construct smooth zero-knowledge hash functions (SZKHFs) as SPHFs
where completeness property holds even in the case of maliciously generated language
parameters and projection key.

2.6 General Preliminaries and Notation
We introduce most of the notation used in this thesis in each relevant section where it is used for
the first time. Here, we only list some general notation that we use in all chapters.

2.6.1 General Notation
For any positive integer n, [n] denotes the set {1, . . . , n}. We use λ to denote the security
parameter. We write f(λ) ≈λ g(λ) if the difference between f and g is negligible in λ. We use
DPT (resp. PPT) to mean a deterministic (resp. probabilistic) polynomial time algorithm. We
denote by Y ←$ F(X) a probabilistic algorithm F that on input X outputs Y . Similarly, notation
Y ← F(X) is used for a deterministic algorithm with input X and output Y . All adversaries
will be stateful. Throughout the paper, Fq will denote the field with q elements.
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2.6.2 Bilinear groups
A bilinear group generator G(1λ) returns public parameters pp = (p,G1,G2,GT , ê, [1]1 , [1]2),
where G1, G2, and GT are additive cyclic groups of prime order p = 2Ω(λ), [1]1 = g1, [1]2 = g2
are generators of G1, G2, resp., and ê : G1 ×G2 → GT is a non-degenerate PPT-computable
bilinear pairing. Depending on which notation suits better to the context, we use different
notation for pairing operation. Specifically, we use multiplicative notation in Chapter 3, where
∀U ∈ G1,∀V ∈ G2,∀a, b ∈ Z : ê(Ua, V b) = ê(U, V )ab, and additive (bracket) notation
in Chapters 4 and 6, where we write [a]ι to denote a [1]ι and ê([a]1 , [b]2) = [a]1 • [b]2 = [ab]T .
The same notation naturally extends to matrices [M ]t for M ∈ Zn×m

p . Since every algorithm A
takes as input the public parameters we skip them when describing A’s input. Similarly, we do
not explicitly state that each protocol starts by running G.
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Chapter 3

Balancing Privacy and Accountability in
Blockchain Identity Management

In this chapter we present our results on balancing privacy and accountability in blockchain
identity management. The contents of this chapter are taken almost verbatim from [70, 71],
where we first presented these results.

3.1 Introduction
Early applications of blockchain to payment systems such as Bitcoin do not guarantee privacy.
In the Bitcoin blockchain, blocks posted on the public ledger consist of transactions, making
Bitcoin transparent – transactions are there for everybody to see. However, the identities are
pseudonymous, and not tied to real world identities. Consequently, Bitcoin has the property
that while the ownership of money is implicitly anonymous, the flow of money is globally
visible. While this was perceived to be truly anonymous early on, there have been several
works that deanonymize Bitcoin flow by analysing the payment graph [134]. To overcome the
problem of lack of privacy in the first generation of cryptocurrencies such as Bitcoin, Ethereum,
etc., new systems were designed to guarantee transaction privacy and anonymity for their
users [25, 82, 144]. Systems like Zerocash [25] fully hide both the value inside a transaction,
and the sender and receiver identities. Most blockchain use-cases, however, are hindered by
complete privacy as they need accountability and identity management. Privacy-preserving
systems like ZCash are not designed with accountability in mind 1. In order to conform with
regulations like “Know your customer" (KYC) and “Anti-money laundering" (AML), a legal
authority should be able to learn the value and identities of the parties involved in any transaction;
this requirement seems to be at odds with privacy. The seemingly contradictory requirements of
transaction privacy & user anonymity, and regulatory requirements such as KYC/AML imposed
on financial and banking institutions is a major hurdle in widespread adoption of the blockchain.

Our Contribution. In this work, we address the problem of balancing accountability with
privacy in blockchain-based systems. We propose a new architectural design of an “identity layer"
that will provide privacy for its users – that is, no one, observing the network transactions and the

1Zcash considers solutions to implement AML and KYC controls [1], however this solution requires trust on a
single party.
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status of the Blockchain should be able to learn about the identity of the owner of any account in
the system. At the same time, the identity layer achieves accountability in the sense that in the
presence of a reasonable suspicion, law-enforcement agencies (or other authorized parties), will
be able to access the transaction history of a given user and/or block its funds, in a way similar
to what is guaranteed today by traditional financial institutions. We develop cryptographic
mechanisms that enhance accountability measures against misuse of the blockchain, while still
providing privacy. Towards this end, we employ cryptographic techniques to design provably
secure protocols, with both privacy and accountability guarantees. We prove the security of
our constructions in the Universal Composability (UC) framework. We provide a high-level
overview of the design of the system, and then discuss the techniques and cryptographic tools
used. We believe that such an identity layer design will make Blockchain and cryptocurrencies
more attractive for regulators, public institutions and traditional businesses which are interested
in complying with existing legislation. In fact, the identity layer of Concordium2, an upcoming
major Blockchain project, is based on the design presented in this paper.

Overview of the System. In the proposed system, the identity and credentials of each participant
in the network are initially verified and stored by authorized parties called Identity Providers
(IPs). Each user can open a limited number of accounts where an account has an identifier that
is derived from a PRF applied to a value that is between 1 and the maximal number of accounts,
say n. The PRF key K is held by the user. When a user registers with an IP, K is encrypted
through a threshold encryption scheme, and this ciphertext is stored with the IP. This is set
up such that an appropriate number of Anonymity Revokers (ARs) would be able to decrypt.
Standard anonymous credentials are used to certify additional attributes of the user.

When a user creates an account, they prepare some data to be published on the blockchain.
This includes a threshold encryption of the account holder’s public key (that was also stored
with the IP at registration time). It also includes zero-knowledge proofs that the attributes the
user chooses to publish in the account have been signed by the IP, and that the account identifier
has been correctly computed. Thus, an account may contain complete identification of the
account holder, if the user chooses to include it, or it may reveal less information, for instance
the citizenship and age of the account holder.

Finally, an account includes various account specific public keys. Using the corresponding
secret keys, the account holder can then perform transactions anonymously in the network.
Depending on the key material included in accounts, several different ways to do transactions
can be realized – this is a problem orthogonal to that of implementing the identity layer, and we
give some informal examples of how this could be done in Section 3.8.

If it is suspected that an account is used for fraudulent purposes, the encrypted account
information can be decrypted by a qualified set of the ARs, and an anonymous account can
be linked (via the public key) to an id provided by the IP. On the other hand, if a particular
user is suspected of fraud, the IP can provide its record for this user, and a qualified set of
ARs can decrypt the information to learn the PRF key K. Now, they can generate the set of
all values PRFK(x) for x = 1, . . . , n which are all the possible values for an account identifier.
One can then identify all accounts of the user by searching the blockchain for accounts with
these identifiers. Privacy is therefore guaranteed for all users, except those whose anonymity is
revoked by a sufficient number of ARs.

2concordium.com
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Note that the above also implies that we have a mechanism for preventing a user from opening
an unbounded number of accounts using a single certificate from the IP: if this were possible, it
would open the door for attacks where an individual registers with an IP and then allow other
individuals to open accounts in their name, perhaps after payment of a small sum of money. On
the other hand, we do not want the account holder to have to interact with the IP for every new
account it wants to create, as this would affect efficiency. While the concrete number of accounts
allowed per user is an implementation dependent parameter, our technique allows to achieve
a reasonable tradeoff. The zero-knowledge proofs force the user to compute the account id’s
correctly, which only allows n different id’s. Thus, if one attempts to open more accounts than
allowed, this must result in a pre-existing account identifier, and the Blockchain will reject it.

We prove security of the system when either any number of account holders are actively
corrupt, or when the identity providers are semi-honest corrupt. Note that, similar to certification
authorities in standard PKI, we need some trust in the IPs: a malicious identity provider
(equivalently, a malicious account holder colluding with a semi-honest IP and therefore learning
the key), could produce certificates containing false identities, therefore undermining the system.
Finally, depending on which properties we want to emphasize, we could tolerate different
corruption levels among the anonymity revokers. Thus our system is secure in the presence of
actively corrupt users and a threshold number of passively corrupt anonymity revokers; or, in
the presence of passively corrupt identity-provider and a threshold number of passively corrupt
anonymity revokers. In our design it is paramount that the service provided by the anonymity
revokers to be available, and we want to emphasize privacy. Thus, we opt for assuming a majority
of semi-honest ARs. Using standard methods, we could instead tolerate a minority of actively
corrupted ARs.

Overview of technical ideas. We use cryptographic schemes such as Pedersen commit-
ments [143], Dodis-Yampolskiy PRF [77], Pointcheval-Sanders (PS) signature scheme [145], CL
encryption scheme [54]. We use zkSNARKs in combination with commitments and signatures
in the spirit of [9, 48]: the PS blind signature we use is defined using groups of a certain
prime order, and when a user proves knowledge of a signature, the message that is signed is
committed to using a Pedersen-type commitment in such a group. Now, we can use standard
sigma-protocols to provide commitments to individual attributes of the user in the same group,
and finally use SNARKs on committed messages to show statements such as “the age attribute of
the user is a number greater than 18". In this way, we only need to use SNARKs on rather small
circuits, and we can achieve much greater efficiency than if we had to convert large statements
involving, e.g, group operations into a Boolean circuit to be evaluated inside the SNARK. In this
way, creating an account requires a constant number of exponentiations (i.e., independent of the
security parameter), and likewise, the number of group elements in an account is constant.

We provide a generic lifting transformation for Fiat Shamir NIZKs for DL-languages into
UC NIZKs. While such a transformation by encrypting the witness under a key that is part of
the CRS (and the secret key part of the CRS trapdoor) is folklore [75], using the CL encryption
scheme allows us to efficiently prove statements about values in the exponent, which is novel to
the best of our knowledge.

Related Work. The cryptographic tools used in building our solution, like commitment
schemes, blind signatures, zero-knowledge proofs, and threshold encryption are based on
anonymous credentials technology. Anonymous credentials [60] allow a party to prove to a
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verifier that one has a set of credentials without revealing anything beyond this fact. Revocable
anonymity [43, 125] allows a trusted third party to discover the identity of all otherwise
anonymous participants. Conditional anonymity requires that a user’s transactions remain
anonymous until certain conditions are violated [44, 45, 69]. In [69], an unclonable identification
scheme is introduced, that is, roughly, an identification scheme where honest users can identify
themselves anonymously as members of a group, but where clones of users can be detected
and have their identities revealed if they identify themselves simultaneously. This was extended
from one-time authentication to n-times anonymous authentication in [45] where a certain
number of unlinkable accounts are derived that can later be efficiently traced. The works
of [13, 139, 154, 155] addressed related problems of allowing a user to show a credential
anonymously and unlinkably up to n times to a particular verifier. The potential for abuse of
unconditional anonymity by misbehaving users has been articulated in the context of group
signatures. In a group signature scheme, each group member can sign a message on behalf of a
group such that anyone can verify that the group signature is produced by someone in the group,
but not who exactly. Our idea for identifying all accounts of a user in case of revocation by using
a PRF to generate account identifiers is reminiscent of the work of traceable signatures [63] that
enable a tracing agent to identify all signatures produced by a particular member. The idea of
deriving a certain number of unlinkable accounts that can later be efficiently traced has been
used in various forms in the anonymous credential literature [14, 45, 63] for the purposes of
balancing accountability and anonymity.

Unfortunately none of the previous works seem to fit our intended use case, which motivated
us to design the system described in this paper. Moreover, the toolbox of efficient tools available
to the protocol designer has grown in recent years (e.g., the CL encryption scheme, advances in
SNARKs, etc.), which also motivates exploring new designs.

The zkLedger protocol [137] is an asset transfer scheme that hides transaction amounts and
sender-receiver relationship, and supports auditing. The protocol is for a setting where the
transacting parties are banks, and requires the participation of the banks for an audit to take place.
The work of [10] presents a privacy-preserving token management system that supports auditing
in permissioned blockchains. The system of [10] is in the UTXO framework, where users own
tokens that are certified, and prove ownership of tokens in a privacy-preserving manner. In
contrast, we work in the account-based model; and our design is modular – the identity layer is
separate from the transaction layer. One main difference of our work from the works of [137]
and [10] is that while both these works assume that the entire system is permissioned, again
our design is more modular: our ID layer obviously assumes that IPs and ARs are known (and
trusted to some extent) and is therefore in some sense permissioned. However, the ID layer can
work on top of the consensus mechanism of a permissionless blockchain, i.e., any blockchain
that can be abstracted using the ledger functionality Fledger.

Finally, Solidus [57] is a privacy-preserving system that allows customers of financial
institutions (e.g., banks) to transfer assets and ensures that only the banks of the sender and
receiver can learn the transaction details. While there is no explicit audit functionality in Solidus,
banks can reveal the content of a suspicious transaction to the authorized auditors. However this
approach requires to trust a single party (i.e., the bank).
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3.2 Preliminaries and Building Blocks
This section defines our notation and introduces the cryptographic schemes we use in our
construction.

3.2.1 Notation
we refer the reader to Section 2.6 for general notation. We use the identifier AH for account
holder, IP for identity provider and AR for anonymity revoker. By an identifier, we mean an
arbitrary string that uniquely identifies a party.

3.2.2 Pseudorandom Functions
We recall the standard notion of pseudorandom functions.

Definition 3.2.1 (PRF). Let PRF : K×D→ R be a family of functions and let Γ be the set of all
functions D→ R. We say that PRF is a pseudorandom function (PRF) (family) if it is efficiently
computable and for all PPT distinguishers D∣∣Pr [K←$ K,DPRFK(·)(1λ)

]
− Pr

[
g ←$ Γ,Dg(·)(1λ)

]∣∣ ≈λ 0.

We define a weak notion of PRF robustness, meaning that is should be hard to find a key that
produce collisions with the PRF evaluation of an honest user. Our definition is similar to the one
in [80], but here one of the two keys is chosen honestly.

Definition 3.2.2 (Weakly Robust PRF). A PRF is weakly robust if:

Pr[K←$ Gen(1λ), (x∗,K∗)←$ APRFK(·)(1λ) : ∃(x, y) ∈ Q,PRFK∗(x∗) = y] ≈λ 0

where Q is the set of inputs/outputs of the oracle available to the adversary.

Instantiation with Dodis-Yampolskiy PRF.

We use the PRF of Dodis and Yampolskiy [77] that operates in a group G of order p with
generator g. On input x and the PRF key K ←$ Fp, PRFK(x) = g1/K+x. This is shown to be
pseudorandom under the Decisional Diffie-Hellman Inversion assumption in group G. Note that
the security holds only for small domains, namely inputs that are slightly superlogarithmic in the
security parameter, but this is sufficient for our work, as the maximum number of accounts a user
can open is less than a constant MaxACC. It can also be easily shown that the Dodis-Yampolskiy
PRF is weakly robust: using the PRF assumption, we can replace the output of the PRF oracle
with random group elements. If the adversary outputs an input x∗ and key K∗ that are compatible
with one of the output of the oracles, we can compute the discrete logarithm of that element as
1/(K∗ + x∗).

3.2.3 Commitment Schemes
Definition 3.2.3 (Commitment Schemes). A commitment schemeCom = (Setup,Commit,OpenVrf)
consists of the following algorithms:
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• Setup(1λ): given the security parameter 1λ, it outputs a commitment key ck. The
commitment key ck defines a message space Sm and a randomizer space Sr.

• Commitck(m): a probabilistic algorithm that given a message m, outputs a pair
(cm, rcm) ←$ Commitck(m) of commitment cm and an opening rcm. We sometimes
write Commitck(m; rcm) when we want to be able to fix the value of the randomness rcm to
a specific value.

• OpenVrfck(cm,m, rcm): a deterministic algorithm that outputs a bit indicating acceptance
or rejection.

Hiding property. We say that Com is hiding if for all non-uniform PPT adversary A, there
exists a negligible function negl(λ) such that∣∣∣∣∣∣12 − Pr

 ck←$ Setup(1λ); (m0,m1)← A(ck);
b′ = b

b←$ {0, 1}; (cm, rcm)←$ Commitck(mb); b′ ←$ A(cm);

∣∣∣∣∣∣ ≤ negl(λ)

where the probability is over the randomness of A, Setup, Commit and the choice of bit b. We
say that Com is perfectly hiding if negl(λ) = 0.

Binding property. A commitment scheme Com is binding if for all non-uniform PPT
adversary A, there exists a negligible function negl(λ) such that

Pr


ck←$ Setup(1λ);

OpenVrfck(cm,m0, r0) = 1∧
OpenVrfck(cm,m1, r1) = 1 ∧m0 ̸= m1

(cm,m0,m1, r0, r1)←$ A(ck);

 ≤ negl(λ)

where the probability is over the randomness of A and Setup. We say that Com is perfectly
binding if negl(λ) = 0.

3.2.4 Blind Signature Schemes
We adapt the notation of [152] to two-round blind signature schemes.

Definition 3.2.4 (Blind Signature Schemes). An interactive signature scheme between a signer
S and user U consists of a tuple of efficient algorithms BS = (Setup,KeyGen, Sign1, Sign2,
Unblind,VerifySig) where

• Setup(1λ), on input the security parameter 1λ outputs pp, which is given implicitly as
input to all other algorithms, even when omitted.

• KeyGen(pp), on input the public parameter pp generates a key pair (sk, pk) for security
parameter λ.

• Sign1(pk,m), which is run by U , takes as input pk and a message m ∈ {0, 1}∗ and outputs
sign1 and ω (w.l.o.g. ω can be thought of as the randomness used to run Sign1).

• Sign2(sk, sign1), which is run by S, takes as input sk and sign1 and outputs sign2.

• Unblind(sign2, ω), which is run by U , takes as input sign2, ω and outputs σ.

24



ExpBlindA (λ)
pp←$ Setup(1λ); (sk, pk)←$ KeyGen(pp);

(m0,m1)← A(sk, pp);
b←$ {0, 1};
(sign1, ω)←$ Sign1(pk,mb);

(sign1, ω)←$ Sign1(pk,m1−b);

sign2, sign2 ← A(sign1, sign1);
let σb, σ1−b denote the (possibly undefined) local outputs of
Unblind(sign2, ω) and Unblind(sign2, ω) respectively.
if VerifySig(pk,m0, σ0) = 0 or VerifySig(pk,m1, σ1) = 0, then (σ0, σ1) = (⊥,⊥);
b∗ ← A(σ0, σ1);
if b = b∗ ∧ |m0| = |m1|, then return 1; else return 0;

Figure 3.1: Experiment in the definition of blindness property

• VerifySig(pk,m, σ) outputs a bit.

Remark 3.2.5. Note that a blind signature scheme implicitly defines a normal signature scheme
as well, where the signing algorithm Sign(sk,m) simply emulates a blind signature protocol and
outputs the resulting signature σ.

The correctness property of the scheme requires that the following holds: for any (pp)←$

Setup(1λ), (sk, pk)←$ KeyGen(pp), any message m ∈ {0, 1}∗, if (sign1, ω)←$ Sign1(pk,m),
sign2 ←$ Sign2(sk, sign1), σ = Unblind(sign2, ω) then VerifySig(pk,m, σ) = 1 with over-
whelming probability over λ ∈ N.

We require the standard notion of existential unforgeability under chosen message attacks
(EUF-CMA) [108]. The blind signature scheme we use should additionally satisfy two properties,
namely blindness and simulatability. Blindness captures the requirement that we run two blind
signing protocols on two messages of the adversary’s choice, and the adversary should not be
able to say which input-signature pair corresponds to which execution. This is stronger than
the definition in [145]; however, we can show that the PS blind signature scheme can be made
to satisfy this stronger, standard definition. This follows from the rerandomizability of PS
signatures.

Definition 3.2.6 (Blindness). An interactive signature scheme BS = (Setup,KeyGen, Sign1,
Sign2,Unblind,VerifySig) is called blind if for any PPT adversaryA,Pr[ExpBlindA (λ) = 1] ≈λ 1/2,
where the experiment ExpBlindA (λ) is defined in Fig. 3.1.

Definition 3.2.7 (Simulatability). An interactive signature scheme BS = (Setup,KeyGen, Sign1,
Sign2,Unblind,VerifySig) is called simulatable if there exist a PPT algorithm S s.t. for any PPT
adversary A, Pr[ExpSimA (λ) = 1] ≈λ 1/2, where the experiment ExpSimA (λ) is defined in Fig. 3.2.
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ExpSimA (λ)
pp←$ Setup(1λ); (sk, pk)←$ KeyGen(pp);

b←$ {0, 1};
(m; r)← A(sk, pp);
(sign1, ω)←$ Sign1(pk,m; r);

sign02 ←$ Sign2(sk, sign1);

σ = Unblind(sign02, ω);

sign12 ←$ S(pk,m, ω, σ);

b∗ ← A(σ,m, signb2);

if b = b∗, then return 1; else return 0;

Figure 3.2: Experiment in the definition of simulatability property

Instantiation with PS Signature scheme [145]

We specify here the multi-message Pointcheval-Sanders (PS) signature scheme and how it
realizes our definition of Blind signature. The PS scheme is a randomizable signature that uses
groups with asymmetric pairing and allows to sign messages that are completely unknown to the
signer.

• Setup(1λ): Sample pp := (p,G1,G2,GT , ê, g1, g2)←$ G(1λ).

• KeyGen(pp): Given (p,G1,G2,GT , ê, g1, g2), the key generation works as follows:

1. Choose x, yi ←$ Fp for i = 1, . . . , ℓ3.
2. Set X = gx1 , X̃ = gx2 , Yi = gyi1 and Ỹi = gyi2 for i = 1, . . . , ℓ.
3. The public key is now (X̃, {Yi}i∈[ℓ], {Ỹi}i∈[ℓ]), while the secret key is X .

• Sign1(pk,m = (m1, . . . ,mℓ)): The user chooses ω ←$ Fp, and computes sign1 =

gω1
∏ℓ

i=1 Y
mi
i . Note that ω is random and not used for anything else, and therefore sign1

perfectly hides the rest of the mi.

• Sign2(sk, sign1): The signer chooses α ←$ Fp and sets a′ = gα1 ̸= 1G1 and b′ =
(X · sign1)α. They output sign2 = (a′, b′).

• Unblind(sign2, ω): For sign2 = (a′, b′), the user first computes σ̂ = (a′, b′/a′ω). Then,
they rerandomize σ̂ by choosing γ ←$ Fp and computing σ = σ̂γ = (σ̂γ

1 , σ̂
γ
2 ). The user

returns σ.

• VerifySig(pk,m = (m1, . . . ,mℓ), σ): The algorithm parses σ as (σ1, σ2) and outputs 1 if
the following checks pass:

1. σ1 ̸= 1G1 .
2. ê(σ1, X̃

∏
Ỹ

mj

j ) = ê(σ2, g2).
3Note that the scheme allows to sign vectors over Fp of length ℓ, so ℓ should be chosen with this in mind.
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The PS signature satisfies Correctness, Unforgeability, Blindness and Simulatability.
Correctness. If σ = (σ1 = h, σ2 = hx+

∑
yjmj), then

ê(σ1, X̃
∏

Ỹ
mj

j ) = ê(h, X̃
∏

Ỹ
mj

j ) = ê(h, g2)
x+

∑
yjmj

= ê(hx+
∑

yjmj , g2) = ê(σ2, g2).

Unforgeability. As shown in [145], the EUF-CMA security of this signature is equivalent to the
single-message version, where its security relies on the following assumption4.

Definition 3.2.8 (PS Assumption 1 [145]). Let (p,G1,G2,GT , ê, g1, g2) be a bilinear group
setting of type 3. For (X = gx1 , Y = gy2) and (X̃ = gx2 , Ỹ = gy2), where x and y are random
scalars in Zp, we define the oracle O(m) on input m ∈ Zp that chooses a random h ∈ G1 and
outputs the pair P = (h, hx+my). Given (g1, Y, g2, X̃, Ỹ ) and unlimited access to this oracle, no
adversary can efficiently generate such a pair, with h ̸= 1G1 , for a new scalar m∗, not asked to
O.

Blindness. Let us define a a game H0 which is define as game ExpBlindA with the only
difference that b = 0. We can also define a symmetrical experiment H1 where the bit b = 1.

To claim indistinguishability between this two games we make the following observations: 1)
sign1 perfectly hides m; 2) the message sign2 coming from a corrupted signer is rerandomized
(thought Unblind algorithm) before the final signature σ is given to adversaryA. From the above
two observations follow that the execution in which A participates first in the computation of σ0

and then of σ1 is identically distributed to the one whereA participate first in the computation of
σ1 and then of σ0. Therefore H0 is indistinguishable from H1.

Simulatability. We start by defining the simulator S. S given m, ω and the signature
σ = (σ1, σ2) chooses β ←$ Fp and returns sign2 = (a′, b′) where a′ = σβ

1 and b′ = σβ
2 · σ

ω·β
1 .

We now argue that the game H0 where sign2 is computed honestly (i.e., as output of
Sign2) is identical distribute to a simulated game H1 where sign2 is computed by S. This
indistinguishability follows from the fact that distribution of the message sign2 output by S and
the distribution of the output of Sign2 are identical. We conclude the proof observing that H0

corresponds to the experiment ExpSimA where the bit b = 0 and H1 corresponds to ExpSimA with
b = 1.

3.2.5 Secret Sharing Scheme
Informally, a (n, d)-secret sharing of a secret value s is an encoding of s into n shares, such that
any d+ 1 shares together can reconstruct s, whereas fewer shares reveal no information about s.

Definition 3.2.9. A (n, d)-secret sharing scheme SS = (Share,Reconstruct) over message space
S consists of the following algorithms:

• Sharen,d(s; r)→ ([s]1, . . . , [s]n) is a randomized algorithm that on any input s ∈ S and
randomness r, outputs n shares ([s]1, . . . , [s]n).

• Reconstructn,d([s]i1 , . . . , [s]id+1
)→ s′ is a deterministic algorithm that takes d+ 1 shares

as input and returns the reconstructed message s′ ∈ S.
4The assumption is related to the LRSW assumption and is proved in [145] to hold in the bilinear generic group

model.
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ExpSS−Sim
A (λ, n, d)

(C, s0, s1)← A(n, d);
if s0 ̸∈ S ∨ s1 ̸∈ S ∨ |s0| ≠ |s1| then return 0;

([s0]1, . . . , [s0]n)← Sharen,d(s0);

([s1]1, . . . , [s1]n)← Sharen,d(s1);
{[s′0]i}i∈[n]\C ← SimShare(n, d, {[s1]i}i∈C , s0);
b← {0, 1}; if b = 0 then x = {[s0]i}i∈[n];
else x = {[s1]i}i∈C ∪ {[s′0]i}i∈[n]\C ;
b′ ← A(x); if b′ = b ∧ |C| ≤ d then return 1;

else return 0;

Figure 3.3: Share Simulatability experiment for Secret Sharing

Informally, correctness requires that s′ = s, and privacy requires that given d or fewer shares
of either s0 or s1, no efficient adversary can guess which message was shared.

Share Simulatability. We additionally use another property for a secret sharing as defined in
[147] which requires that given any set of d or fewer shares of s0 and given s1, there exists a PPT
algorithm SimShare that generates the rest of the shares in such a way that is indistinguishable
from a fresh sharing of s1.

Definition 3.2.10 (Share Simulatability). We say that a (n, d)-secret sharing scheme SS =
(Share,Reconstruct) over message space S is share simulatable if there exists an efficient
simulation algorithm SimShare such that for all PPT adversaries A, Pr[ExpSS−Sim

A (λ, n, d) =
1] ≈λ 1/2, where the experiment ExpSS−Sim

A (λ, n, d) is described in Fig. 3.3.

3.2.6 (Ad-hoc) Threshold Encryption Scheme
We recall the definition of an ad-hoc threshold encryption scheme here.

Definition 3.2.11. A (n, d)-threshold encryption scheme TE = (TKeyGen,TEnc, ShareDec,
TCombine) over message space M consists of the following algorithms:

• TKeyGen(1λ) is a randomized key generation algorithm that takes the security parameter
λ as input and returns a private-public key pair (sk, pk).

• TEncn,dpkR
(m), a probabilistic encryption algorithm that encrypts a message m ∈M to a

set of public keys pkR = {pki}i∈R in such a way that any size d+ 1 subset of the recipient
set should jointly be able to decrypt. We sometimes write TEncn,dpkR

(m; r) when we want to
be able to fix the value of the randomness r to a specific value.

• ShareDecn,dpkR,ski
(ct), on input a ciphertext ct and a secret key ski, outputs a decryption

share µi.

• TCombinen,dpkR
(ct, {µi}i∈I), a deterministic algorithm that takes a subset I ⊂ [n] with size

d+ 1 of decryption shares {µi}i∈I and outputs either a message m ∈M or ⊥.

28



ExpSSSA (λ, n, d)
[n] ⊇ C ← A(λ, n, d);
(ski, pki)←$ TKeyGen(1λ) for i ∈ [n];

([n] ⊇ R,m0,m1)← A({pki}i∈[n], {ski}i∈C);

b←$ {0, 1}; ct←$ TEncn,dpkR
(mb);

b′ ← A(ct);

if
(
b′ = b ∧ |m0| = |m1| ∧ |R ∩ C| ≤ d

)
;

then return 1; else return 0;

Figure 3.4: Static Semantic Security Experiment for Threshold Encryption

ExpPDS
A (λ, n, d)

[n] ⊇ C ← A(λ, n, d);
(ski, pki)←$ TKeyGen(1λ) for i ∈ [n];

([n] ⊇ R,m0,m1)← A({pki}i∈[n], {ski}i∈C);

b←$ {0, 1}; ct0 ←$ TEncn,dpkR
(m0); ct1 ←$ TEncn,dpkR

(m1);

if b = 0 then µi = ShareDecn,dpkR,ski
(ct0) for i ∈ R\C;

else if b = 1 then
(
µi = ShareDecn,dpkR,ski

(ct1) for i ∈ R ∩ C

∧ µi = SimPart(n, d,pkR, c0, {µj}j∈R∩C ,m0) for i ∈ R\C
)
;

b′ ← A(ctb, {µj}j∈R\C);

if
(
b′ = b ∧ |m0| = |m1| ∧ |R ∩ C| ≤ d

)
;

then return 1; else return 0;

Figure 3.5: Partial Decryption Simulatability Experiment for Threshold Encryption

We use the static security definition of Reyzin et al. [147] for threshold encryption
schemes which requires two properties, namely static semantic security and partial decryption
simulatability.

Definition 3.2.12. A (n, d)-threshold encryption schemeTE = (TKeyGen,TEnc, ShareDec,TCombine)
is (n, d)-statically semantic secure (SSS) if for all PPT adversaries A, Pr[ExpSSSA (λ, n, d) =
1] ≈λ 1/2, where the experiment ExpSSSA (λ, n, d) is defined in Fig. 3.4.

Definition 3.2.13. We say that a (n, d)-threshold encryption scheme TE = (TKeyGen,TEnc,
ShareDec,TCombine) is (n, d)-partial decryption simulatable (PDS) if there exists an efficient
algorithm SimPart such that for all PPT adversaries A, Pr[ExpPDS

A (λ, n, d) = 1] ≈λ 1/2, where
the experiment ExpPDS

A (λ, n, d) is described in Fig. 3.5.

Definition 3.2.14. A threshold encryption scheme TE = (KeyGen,TEnc, ShareDec,TCombine)
is (n, d)-statically secure if it is both (n, d)-statically semantically secure and (n, d)-partial
decryption simulatable.
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Construction based on Share and Encrypt paradigm.

Below, we recall the construction of [74]. Let PKE = (KeyGen,Enc,Dec) be a public key
encryption scheme and SS = (Share,Reconstruct) be a secret sharing scheme.

• TKeyGen(1λ): return KeyGen(1λ).

• TEncn,dpkR
(m): return ct = (ct1, . . . , ctn), where cti = Encpki(mi) for i ∈ R and

(m1, . . . ,mn) = Sharen,d(m).

• ShareDecn,dpkR,ski
(ct): let ct = (ct1, . . . , ctn). Return decryption share µi = Decski(cti).

• TCombinen,dpkR
(ct, {µi}i∈I): Return m = Reconstructn,d({µi}i∈I).

The following theorem is proved in [147] ( see Appendix D, Thm. 11 of [147] ).

Lemma 3.2.15. The threshold encryption scheme TE described above is (n, d)-statically secure,
as long as SS is a secure share simulatable (n, d)-secret sharing scheme, and PKE is a
CPA-secure public key encryption scheme.

3.2.7 Non-Interactive Zero-Knowledge Proofs
Definition 3.2.16 (NIZK). A non-interactive zero-knowledge proof system (NIZK) for an NP
language L with relationRL consists of the following four algorithms:

• GenCRS(1λ,L). On input 1λ and the description of the language L, generates a common
reference string crs, a trapdoor τ and an extraction key ek.

• P(crs, x,w). On input of a crs, a statement x with witness w, outputs a proof π.

• V(crs, x, π). Given a crs, a statement x and a proof π, outputs a bit indicating accept or
reject.

• Sim(crs, τ, x). On input a crs, a trapdoor τ and a statement x, outputs a simulated proof π
without needing a witness for x.

Completeness. A NIZK is (perfectly) complete, if an honest prover with a valid witness can
always convince an honest verifier. More formally, for any (x,w) ∈ RL, we have:

Pr

[
(crs, τ, ek)← GenCRS(1λ,L), π ← P(crs, x,w) :

V(crs, x, π) = 1

]
= 1

Soundness. A NIZK scheme for the language L is called (computationally) sound, if for all
PPT adversaries A, we have:

Pr

[
(crs, τ, ek)← GenCRS(1λ,L), (x, π)← A(crs) :

V(crs, x, π) = 1 ∧ x ̸∈ L

]
≈λ 0
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Zero-knowledge. A NIZK scheme for the language L is called (computationally) zero-
knowledge if for all PPT adversary A,

Pr
[
(crs, τ, ek)← GenCRS(1λ,L) : AP(crs,·,·)(crs) = 1

]
≈λ Pr

[
(crs, τ, ek)← GenCRS(1λ,L) : ASim(crs,τ,·)(crs) = 1

]
Simulation Soundness. A NIZK proof for the language L is called simulation sound if for all
PPT adversaries A,

Pr

[
(crs, τ, ek)← GenCRS(1λ,L); (x, π)← ASim(crs,τ,·)(crs) :

(x, π) /∈ Q ∧ x /∈ L ∧ V(crs, x, π) = 1

]
≈λ 0

where Q is the list of simulation queries and responses (xi, πi).

Simulation extractability. This is a strong notion which requires that for any adversary that
outputs a proof after seeing many simulated proofs (for either true or false statements), there
exists an efficient extractor that can extract the witness from the proof. More formally, we say
that a NIZK scheme for the language L is simulation extractable if there exists an efficient
algorithm Ext (called extractor), such that for any PPT adversary A, we have:

Pr

[
(crs, τ, ek)← GenCRS(1λ,L); (x, π)← ASim(crs,τ,·)(crs, ek);

w← Ext(crs, ek, x, π) : (x, π) ̸∈ Q ∧ (x,w) ̸∈ RL ∧ V(crs, x, π) = 1

]
≈λ 0

where Q contains the list of statement-proof pairs that A asks the oracle Sim(crs, τ, ·). Note
that this definition considers a strong version of simulation extractability, where the adversary
should not even be able to generate a new proof (different from oracle’s response) for a statement
that has been queried before. We can relax this definition by considering a weaker version where
the adversary may be able to generate a new proof for a queried statements. However, for the
universally composable NIZKs that we use for realizing Fnizk (defined in section 3.4), we require
the stronger definition. Thus, when we discuss about the notion of simulation extractability, we
mean the stronger version defined above.

3.2.8 CL Framework
In [54], Castagnos and Laguillaumie introduced the so-called CL framework, which allows to
construct cyclic groups G where the decisional Diffie-Hellman (DDH) assumption is believed to
hold and furthermore, there exists a subgroup H of G such that the discrete logarithm problem
in H is easy. As the main application of this framework, they construct the first practical linearly
homomorphic encryption scheme where the plaintext space is Zq with prime order q, where
the size of q can be made independent of the security parameter. We make use of the CL
encryption schemes in some of our constructions. In particular, the CL framework allows to
encrypt values “in the exponent”, so that proving statements about the message is easy using
efficient Σ-protocols in [56], while at the same time allowing for efficient decryption. (As
opposed to standard ElGamal encryption, where it is necessary to limit the size of the message
in the exponent to allow for decryption). This will be useful both to instantiate our threshold
encryption scheme (used to allow anonymity revokers to “trace” a suspicious account holder),
and in our construction of extractable NIZK proofs in the crs model.

In the following, we recall the definition of CL framework from [56].
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Definition

Let λ be a positive integer and q be a µ-bit prime for µ ≥ λ. The framework GenCL consists of
two algorithms GenCL = (Gen, Solve) defined as follows:

• Gen(1λ, q)→ pp := (Ĝ,G,H,Gq, s̃, g, h, gq): the algorithm takes the security parameter
λ and a prime q as inputs and outputs a tuple pp := (Ĝ,G,H,Gq, s̃, g, h, gq), where

– (Ĝ, ·) is a finite abelian group with order n̂ := q · ŝ where the bitsize of ŝ is a function
of λ and gcd(q, ŝ) = 1. It is required that valid encodings of elements in Ĝ can
efficiently be recognized.

– (G, ·) is a cyclic subgroup of Ĝ of order n := q · s where s divides ŝ.

– (H, ·) is the unique cyclic subgroup of Ĝ of order q, generated by h.
– Gq := {xq|x ∈ G} is the subgroup of G of order s. Since H ⊂ G, it holds that
G ≃ Gq ×H.

– s̃ is an upper bound of ŝ.
– g, h and gq are respectively the generators of G, H and Gq, where g := h · gq.

• Solve(q, pp, X)→ x′: this is a DPT algorithm that solves the discrete logarithm problem
in H:

Pr
[
x = x′ : pp←$ Gen(1λ, q), x←$ Z/qZ, X ← hx

x′ ← Solve (q, pp, X)] = 1

Hard Subgroup Membership Problem

We now recall the hard subgroup membership problem within a group with an easy DL subgroup
(HSM-CL) from [55]. The HSM-CL assumption states that it is hard to distinguish the elements
of Gq in G.

Definition 3.2.17 (HSM-CL assumption). Let λ be a positive integer and GenCL = (Gen, Solve)
be a generator that generates a group with an easy DL subgroup as defined above. Let D
(resp. Dq) be a distribution over the integers such that the distance between the distribution
{gx, x ←$ D} (resp. {gxq , x ←$ Dq}) and uniform distribution in G (resp. in Gq) is less than
δ(λ) = negl(λ). The advantage of an adversary A for the HSM-CL problem is now defined as

Advhsm-cl
A (λ) =|Pr[b = b′ : pp←$ Gen(1λ, q), |q| ≥ λ, x←$ D, x′ ←$ Dq,

b←$ {0, 1}, X0 ← gx, X1 ← gx
′

q , b
′ ← A (q, pp, Xb, Solve(·))]− 1/2|

We say that the HSM-CL problem is ε-hard for GenCL if for all PPT adversaryA, Advhsm-cl
A (λ) ≤

ε(λ). And we say HSM-CL holds for GenCL if it is ε-hard for GenCL and ε(λ) = negl(λ).

PKE scheme under HSM-CL assumption

We recall the scheme described in [55] with the following setting: the plaintext space is Zq for
µ-bit prime q and µ ≥ λ; and the secret key x and randomness r are drawn from distribution Dq.
As shown in [55] (lemma 4), to instantiate Dq in practice, one can use the uniform distribution
on {0, . . . , S} for S := 2λ−2 · s̃. The scheme is depicted in Fig.
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CL.Setup(1λ, 1µ)

1. sample a µ-bit prime q
2. pp←$ Gen(1λ, q)

3. return pp

CL.KeyGen(pp)

1. sample α←$ Dq and y ← gαq

2. set pk := y and sk := α

3. return (pk, sk)

CL.Enc(pk,m)

1. sample r ←$ Dq

2. return (grq , h
myr)

CL.Dec(sk, (c1, c2))

1. compute M ← c2/c
α
1

2. return Solve(q, pp,M)

Figure 3.6: Encryption scheme from HSM-CL [55]

Theorem 3.2.18. [55] The scheme described in Fig. 3.6 is semantically secure under chosen
plaintext attacks (IND-CPA) under the HSM-CL assumption.

3.3 System Design
We give a high-level overview of the design of the identity layer in terms of the entities involved,
data objects and protocols between the entities.

3.3.1 Entities Involved
The following entities are involved in our design:

• Account Holders (AH): those are individuals who hold accounts on the block-chain. We
assume AHs possess some mean for performing legal identification (e.g., a passport), in
the country where they live. They are interested in opening accounts and performing
transactions on the blockchain but, before doing so, they have to register with an Identity
Provider (IP).

• Identity Provider (IP): an identity provider is an entity that, as the name suggests, can
provide a digital identity to an AH. The identity provider “authorizes” a user to open
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accounts on the blockchain, and therefore to perform transactions. Jumping ahead, when
observing transactions on the blockchain, it should not be possible to find out the identity
of an AH (not even for the IP itself), while everyone should be able to see which IP has
authorized a given account, thus creating trust in the account.

• Anonymity Revoker (AR): anonymity revokers are parties which are involved in case
where law-enforcement or other authorized entities need to be able to extract the identity
of the owner of some account on the blockchain. We can make threshold assumptions on
the AR and e.g., require that at least d+1 ARs must give an approval before the anonymity
of a user is revoked.

3.3.2 Data Objects
We now describe the data objects that are held by the entities.

Account Holder Certificate (AHC). After an account holder registers with an identity provider,
the AH obtains a certificate containing:

• A public identity credential IDcredPUB and a secret identity credential IDcredSEC.

• A key K for a pseudorandom function PRF.

• One or more attribute lists AL such as some identifier, age, citizenship, expiration date, etc.

• A signature on (IDcredSEC,K,AL) that can be checked using pkIP. A valid signature proves
that an AH with attributes as in AL has registered with IP and has proved knowledge of
IDcredSEC corresponding to IDcredPUB.

Account Creation Information (ACI). Given an AHC, an account holder can create new accounts
and post the corresponding ACI on the ledger, containing:

• RegIDACC, an account registration ID. This is defined to be RegIDACC = PRFK(x) where
K is a key held by AH and signed by the IP, and where the account in question is the x’th
account opened by the AH based on a given AHC. If AH behaves honestly, then RegIDACC

is unique for the account, and x ≤ MaxACC. The latter condition is enforced by the proof
below, the former can be checked publicly.

• Anonymity revocation data: this is a threshold encryption EID = TEncn,dPKAR
(IDcredPUB),

where any subset of size d+ 1 of anonymity revokers are able to decrypt EID and obtain
IDcredPUB.

• The identity IP of the identity provider who did the signature in the AHC used for this
account.

• An account specific public key pkACC. It will be used, for instance, to verify transactions
related to the account.

• A policy P, which asserts some information about the attribute list AL.
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• A proof π that can be checked using pkIP and verifies that ACI can only be created by an
AH that has obtained an AHC from IP, such that P(AL) = ⊤, where AH knows the secret
keys corresponding to pkACC, as well as IDcredSEC corresponding to the IDcredPUB that was
presented to the IP, and where RegIDACC,EID and ERegID = TEncn,dPKAR

(K) are correctly
generated.

Identity Provider’s information on Account Holder (IPIAH). This is the data record that the IP
stores after an AH has registered. It contains:

• The name AH of the account holder and its public identity credential IDcredPUB.

• A set of anonymity revokers AR1, ...,ARn with public keys PKAR and an encryption
ERegID = TEncn,dPKAR

(K). Here, K is the PRF key chosen by the AH at registration time.

3.3.3 Protocols
The following are the main protocols in our design.

Account Holder Registration. The protocol takes place between an IP and an AH who owns
a key pair (IDcredSEC, IDcredPUB) and an attribute list AL. At the end of the protocol, the AH
receives an AHC and the IP obtains a IPIAH as described above. The AH sends their attribute
list AL to IP and proves (via non-cryptographic means) their identity to IP. More concretely,
this means that the IP must verify that the entity it is talking to indeed has the name AH and
hence it received AL from the correct entity. It should also verify that the attributes in AL are
correct w.r.t. the AH. The AH also sends to IP their public key IDcredPUB and an encryption
ERegID = TEncn,dPKAR

(K) where K is a PRF key. Next, AH and IP engage in a blind signature
scheme, which allows AH to receive a signature on (IDcredSEC,K,AL) that is generated under
the secret key skIP of the IP. In addition, AH proves (cryptographically, in ZK) that they know
IDcredSEC corresponding to IDcredPUB, that the same IDcredSEC was input to the blind signature,
and that the encryption contains the same K that was input to the blind signature scheme. IP
stores IPIAH = (IDAH, IDcredPUB,AL,ERegID,AR1, . . . ,ARn).
Create New Account. An account holder AH wants to create an account that satisfies some
policy P (e.g., above 18, resident in country X, etc.). They take as input an AHC, a policy P
and the public key pkAR of one (or more) anonymity revoker(s) with name AR. At the end, AH
produces some ACI that can be posted to the blockchain. They also need to store secret key
skACC that is specific to the account. The protocol works as follows: AH generates an account
key pair (pkACC, skACC) and an encryption of their public identity credential IDcredPUB under
the public key of the anonymity revokers’ PKAR, i.e., EID = TEncn,dPKAR

(IDcredPUB). Next, AH
calculates RegIDACC = PRFK(x), where we assume this is the x’th account that is opened using
the AHC that is input. At last, AH produces a a non-interactive zero-knowledge (NIZK) proof of
knowledge π for statement

st = (P,EID,RegIDACC, IP, pkACC)

using secret witness
w = (σ, IDcredSEC,K,AL, skACC)

for the relation R(st, w) that outputs ⊤ if:

35



1. σ is a valid signature under pkIP for a message of form (IDcredSEC,K,AL).

2. AL satisfies the policy i.e., P(AL) = ⊤.

3. RegIDACC = PRFK(x) for some x ≤ MaxACC.

4. EID = TEncn,dPKAR
(IDcredPUB).

5. (pkACC, skACC) is a valid key pair.

Let ACI = (RegIDACC,EID,AR1, ...,ARn, IP, pkACC,P, π).
Revoke Anonymity of Account. Revocation of the anonymity of an account can be done by at
least d+ 1 of the n ARs involved in the set-up of the account, working together with the IP with
whom the AH registered. The input is an account identifier RegIDACC and the output is the name
AH of the account holder. The protocol proceeds as follows: Given an account RegIDACC whose
anonymity needs to be revoked, the ARs find the ACI containing RegIDACC on the blockchain,
collaborate to decrypt EID and learn IDcredPUB. The registration information also contains the
public name IP of the identity provider who registered IDcredPUB. The AR’s contact this IP
who then locates the IPIAH = (AH, IDcredPUB,AL,ERegID,AR1, ...,ARn) record that contains the
IDcredPUB that was decrypted. This record also includes AH, thus IP and the set of ARs have now
identified the AH.
Trace accounts of User. If a user with a given name AH is suspected of engaging in illegal
activities, the IP and a set of at least d + 1 ARs can identify all accounts of that user. The IP
searches its database to locate the IPIAH = (AH, IDcredPUB,AL,ERegID,AR1, ...,ARn) containing
the relevant AH. This record also contains the names of the relevant AR’s. A qualified set
of these could decrypt the ERegID to learn the PRF key K and generate all values PRFK(x) for
x = 1, . . . ,MaxACC in public. However, due to technicalities in the security reduction, this
would require the PRF to satisfy some form of “selective opening attack” security. Instead, we
let the AR’s decrypt the ciphertext and evaluate the PRF on x = 1, . . . ,MaxACC inside an MPC
protocol, so that K is never revealed to anyone. Either way, the produced values are all the
possible values for RegIDACC that the AH could have used to form valid accounts, so one can
now search the blockchain for accounts with these registration IDs.

3.3.4 Informal Analysis of the Design
If an AH misbehaves and opens more accounts than they are allowed to, this must result in two or
more accounts with the same RegIDACC. This can be publicly detected by the blockchain, and the
second account will be discarded. We note that for this to work, we assume that incentives have
been created so that some parties will indeed observe the duplicates and alert the relevant entities.
Moreover, the construction satisfies revocability and traceability, meaning a malicious AH cannot
create a valid account such that the anonymity revokers together with the identity provider are
unable to revoke its anonymity or trace it. This follows from the soundness of the underlying
zero-knowledge proofs which imply EID = TEncn,dPKAR

(IDcredPUB) and ERegID = TEncn,dPKAR
(K).

Thus, any subset of size d+1 of anonymity revokers can decrypt EID (resp. ERegID) and revoke the
AH’s anonymity (resp. trace all the AH’s accounts). Lastly, due to the security of the underlying
PRF and the threshold encryption scheme and also the ZK property of the proof π ∈ ACI, our
design supports anonymity of the account holders, in the sense that a malicious identity provider
even by cooperating with d anonymity revokers and other dishonest account holders cannot link

36



a valid account to an account holder. Since we are using a Blockchain e.g., an imperfect bulletin
board, we also need to worry that a malicious AH can’t “rush” and steal an honest user account
number by maliciously choosing a PRF key K which “hits” some of the account numbers of the
honest users which have not yet been finalized by the Blockchain. In order to do this we define
and use a weakly robust PRF.

3.4 ID-layer Formalization

3.4.1 The UC-Model
We use the UC-security [52] framework with static corruption. In the following, the reader is
assumed to be familiar with the basic concepts of UC security and is referred to [52] for a more
detailed description.

Let Z denote the environment. For a protocol Π and an adversary A, we write REALΠ,A,Z
to denote the ensemble corresponding to the protocol execution. For an ideal functionality F
and a simulator S, we write IDEALF,S,Z to denote the distribution ensemble of the ideal world
execution. We say that a protocol Π UC-realizes a functionality F if for all PPT adversaries A
corrupting a subset of parties, there exists a simulator S such that for all environments Z , the
ensembles REALΠ,A,Z and IDEALF,S,Z are computationally indistinguishable.

In the rest of the section we first recall (standard) ideal functionalities used by our protocol
and then describe the main ideal functionalities in our construction.

Functionality Fcrs

The functionality is parametrized by a distribution D and proceeds as follows.

• Choose a value crs←$ D.

• On input (CRS) from a party P , return (CRS, crs) to P .

Functionality Fsmt

The functionality models a secure channel between a sender S and a receiver R.

• Upon input (SEND, R,m) from a party S, if both S and R are honest, output
(SENT, S,m) to R and (SENT, S, R, |m|) to A. Otherwise, if at least one of S and R
is corrupt, output (SENT, S, R,m) to A.

Registration Functionality

The functionality allows identity providers and anonymity revokers to input a key pair (sk, pk) ∈
{0, 1}∗ × {0, 1}∗ once such that they would not be allowed to modify or delete it later. The
account holders can retrieve the public keys of registered parties by the RETRIEVE command.
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Functionality Freg

Register
Upon receiving a message (REGISTER, skP , pkP ) from party P , if this is the first
request from P , then keep the record (P, skP , pkP ) and return (INITIALIZED, P ).
Otherwise, ignore the message.

Retrieve
Upon receiving a message (RETRIEVE, Pi) from some party Pj or the adversary,
output (RETRIEVE, Pi, pkPi

) to Pj where pkPi
= ⊥ if no record (Pi, skPi

, pkPi
) exists.

NIZK Functionality

We use Fnizk as defined by Groth et al. in [119].

Functionality Fnizk

The functionality is parametrized by a relation R for which we can efficiently check
membership.

Proof

• On input (PROVE, x, w) from party P , ignore if (x,w) ̸∈ R. Send (PROVE, x)
to A.

• Upon receiving the answer (PROOF, π) fromA, store (x, π) and send (PROOF, π)
to P .

Verify

• On input (VERIFY, x, π) from V check whether (x, π) is stored. If not send
(VERIFY, x, π) to A.

• Upon receiving the answer (WITNESS, w) from A, check (x,w) ∈ R and if so,
store (x, π). If (x, π) has been stored, output (VERIFICATION, 1) to V , else
output (VERIFICATION, 0).

Ledger Functionality

The functionality Fledger (which is an adapted and simplified version of the functionality given
by [126]) abstracts a public ledger which can be accessed globally by protocol parties or
environmentZ . When accounts are created and posted by account holders, the ideal functionality
first validates the account and then appends them to the buffer. The environment can later specify
when to free the buffer and append it to the ledger.
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Functionality Fledger

The functionality is globally available to all parties and is parameterized by a predicate
VALIDATE, an initially empty list L of bit strings and a variable buffer initially set to ε.

Append
Upon input (APPEND, x) from party P, if VALIDATE(state, (buffer, x)) = 1, then set
buffer← buffer||x.

Retrieve
Upon input (RETRIEVE) from a party P or A, return (RETRIEVE, L) to the requestor
in case of an honest party or (RETRIEVE, L, buffer) in case of a corrupt party.

Buffer Release
Upon input (RELEASE,Π) from A, append a permutation Π of buffer to L by setting
L← L||Π(buffer) and set buffer := ε.

Functionality for MPC of PRF output

This functionality allows a set of parties who own secret shares of a PRF key to evaluate the PRF
on a fixed set of inputs.

Functionality Fmpc-prf

The functionality interacts with parties P1, . . . , Pn and is parameterized by a pseudo-random
function PRF, a constant MaxACC, and a (n, d)-secret sharing scheme SS.

Compute
Upon input (COMPUTE,Ki) from at least d+ 1 distinct Pi, proceed as follows:

• compute K = Reconstructn,d(Ki1 , . . . ,Kid+1
).

• evaluate PRFK(x) on all inputs x ∈ [MaxACC] and return the list of outputs to
all the requesters Pi for i ∈ n.

3.4.2 The ID Layer Functionality
The functionality Fid-layer captures the security properties offered by the design of our identity
layer while hiding the implementation details. After the functionality is initialized, it allows
identity providers IP to issue credentials to account holders AH based on their attribute lists
AL. At the level of the ideal functionality, a credential is just a pointer to a record storing the
tuple (AH, IP,AL). Armed with a credential, an AH can create up to MaxACC accounts. When
creating an account, the AH can choose a predicate P of their attributes to be made public (e.g.,
“I am over 18, I am resident of country X” etc.) which, together with the IP who authorized
this account, are the only information which are made public. We capture this by having the
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functionality leak only the fact that an account was created and not the identity of the AH.5
Moreover, when creating an account, the AH also registers a key-pair associated to this account.
The functionality is parametrized by any key-pair relation, which allows our ideal functionality
to be used as a building block in more complex protocols, where the AH then can use those keys
for authentication, encryption, etc. Our functionality also exposes some of the details about the
underlying ledger on top of which it is implemented, thus new accounts are added to a buffer
which can be permuted by the adversary before becoming finalized. This is inevitable as we
run this on top of a ledger which has the same properties. The final two commands of the ideal
functionality, revoke and trace, allow a qualified set of anonymity revokers AR and an IP to
respectively disclose the AH behind a given account, or to find all accounts belonging to a certain
AH.

Functionality Identity layer Fid-layer

We assume that {IP1, . . . , IPm,AR1, . . . ,ARn} is the set of identifiers for identity providers
and anonymity revokers. The functionality is parameterized by values m, n and threshold
d, together with an NP (key-pair) relationRACC such that when parties input CreateACC,
they also specify a key-pair and the functionality verifies if the key-pair satisfies RACC.
Moreover, the functionality maintains the following initially empty records: Count, where
Count[cid] counts the number of accounts created by certificate cid, and two records Cert
and ACC, respectively for keeping track of certificates and accounts and a list L of public
account information.

Initialize
On (INITIALIZE) from party P ∈ {IP1, . . . , IPm,AR1, . . . ,ARn}, output to A
(INITIALIZED, P ).
If all parties have been initialized, store (READY).

Issue
On (ISSUE, IP,AL) from an honest account holder AH (or the adversary in the name
of corrupted account holder AH) and input (ISSUE,AH) from identity provider IP:

• If not (READY), then ignore.
• If there is already a cid with Cert[cid] = (AH, IP, ·, ·), then abort; otherwise, if
IP is honest (resp. corrupt), then send (ISSUE) (resp. (ISSUE,AH, IP,AL)) to
A.

5Note that the environment provides all inputs and sees all outputs. It can therefore observe that an account is
created right after it instructed an account holder to create an account, and can make the connection between the
two. This corresponds to the fact that in a real application an adversary may know that in a long time interval, only
one user creates an account, and so the next account that shows up on chain must belong to that user. Of course, our
system cannot prevent this - the best we can do is to make sure that the account itself is anonymous. This follows in
our model because the ideal adversary - the simulator - will not learn the identity of the holder and will still have
to produce account information which are indistinguishable from the real protocol, thus proving that the account
information leaks no information about its holder.
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• Upon receiving (cid, ISSUE) from A, if cid = ⊥ (in the case of corrupt IP)
or if there already exists cid s.t. Cert[cid] ̸= ⊥, then abort. Otherwise, set
Cert[cid]← (AH, IP,AL) and output (ISSUED, cid) to AH.

Account Creation
Upon inputs (CreateACC, cid,P, (skACC, pkACC)) from honest account holders AH
(or the adversary in the name of corrupted account holder AH), if not (READY), then
ignore. Else, proceed as follows:

• If Cert[cid] = ⊥ then abort, else retrieve (AH′, IP,AL)← Cert[cid].
• Check if AH′ = AH and Count[cid] < MaxACC and that AL satisfies the policy
P.

• Verify that the key pair (skACC, pkACC) satisfies the relation RACC and abort
otherwise.

• Output (CreateACC,P, pkACC, IP) to A.
• Receiving a response (CreateACC, aid) from A, if aid = ⊥ or ACC[aid] ̸= ⊥,

then abort, else do the followings:
– set ACC[aid]← (cid,P, skACC).
– set Count[cid]← Count[cid] + 1.
– add the tuple (aid,P, pkACC, IP) to the account buffer.

• Return (Created, aid) to AH.

Account Buffer Release
Upon input (RELEASE,Π) from the adversary A, remove all tuples from the account
buffer and add the permuted tuples (aid,P, pkACC, IP) of accounts to the account list
L.

Accounts Retrieve
On (RETRIEVE) from an account holder or party P ∈ {IP1, . . . , IPm,AR1, . . . ,ARn},
output a list including all existing tuples (aid,P, pkACC, IP) in the account list L.

Revoke
Upon input (REVOKE, aid) from a (possibly corrupt) identity provider IP and a set of
(possibly corrupt) anonymity revokers {ARi}i∈I⊆[n], proceed as follows:

• If ACC[aid] = ⊥ then return⊥. Otherwise, retrieve (cid,P, skACC)← ACC[aid].
• If IP is the same as the identity provider in Cert[cid] and |I| > d, then return
(aid,AH) to the IP and {ARi}i∈I . Otherwise, return⊥. Moreover, if the identity
provider or at least one anonymity revoker is corrupt, output (aid,AH) to A as
well.

Trace
Upon input (TRACE,AH) from a (possibly corrupt) identity provider IP and a set of
(possibly corrupt) anonymity revokers {ARi}i∈I , proceed as follows:
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• If there is no record (AH, IP, ·, ·) in Cert, then return ⊥. Otherwise, retrieve
(AH, IP, ·)← Cert[cid].

• If |I| > d, return to IP and {ARi}i∈I the list of all aid’s such that ACC[aid] =
(cid, ·, ·). Moreover, if the identity provider or at least one anonymity revoker is
corrupt, return the list to A as well.

3.4.3 Issuing Credentials – the Functionality
We describe here Fissue, an ideal functionality capturing the desired properties of the issue
protocol, which allows an identity provider to issue credentials to account holders. Note that
the functionality can be seen as an augmented blind signature functionality: the account holder
receives a signature (under the secret key of the identity provider) on a secret message m (as in
blind signatures) but also on some public auxiliary information aux and on a secret key chosen by
the account holder. The identity provider is not supposed to learn m (as in blind signatures), but
in addition the identity provider learns a ciphertext which is guaranteed to contain an encryption
of m and the public key corresponding to the secret key which is being signed.

Functionality Issue FR,TE,SIG
issue

The functionality is parametrized by an NP relationR corresponding to the account holders
key pair, a signature scheme SIG = (Setup,KeyGen, Sign,VerifySig) and a (n, d)-threshold
encryption scheme TE = (TKeyGen,TEnc,TDec). We assume that {IP1, . . . , IPm} is the
set of identifiers for identity providers.

Setup

• Upon input (SETUP) from any party, and only once, run pp←$ Setup(1λ) and
return (SETUPREADY, pp) to all parties.

Initialize

• Upon input (INITIALIZE, (skIP, pkIP)) from identity provider IP, ignore if
the party is already initialized or if SETUPREADY has not been returned yet.
Otherwise, if (skIP, pkIP) is a valid key pair according to the relation defined by
KeyGen(pp), store (skIP, pkIP) for this party and output (INITIALIZED, pkIP, IP)
to A.

• If all parties have been initialized, store (READY).

Issue
On input

(
ISSUE, (ct,m, r, pkAR), aux, (skAH, pkAH), IP

)
from account holder AH

and input (ISSUE,AH, pkAR) from identity provider IP:

• If not (READY), then ignore.
• If (skAH, pkAH) ̸∈ R or ct ̸= TEncn,dPKAR

(m; r) then abort.
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• Otherwise compute σ ←$ Sign((skAH,m, aux), skIP).
• Output σ to AH and (pkAH, aux, ct) to IP.

3.5 Formal Protocols Specifications

3.5.1 Identity Layer Protocol
The protocol Πid-layer is run by parties interacting with ideal functionalitiesFreg,Fissue,Fnizk,Fcrs,
Fledger and Fmpc-prf . LetR andRACC be NP relations corresponding to the account holders’ key-
pair and accounts’ key-pair, respectively. Let TE = (TKeyGen,TEnc,TDec) denote a threshold
encryption scheme, PRF a pseudorandom function and SIG = (KeyGen, Sign,VerifySig) a
signature scheme. Protocol Πid-layer proceeds as follows.

Protocol Identity layer Πid-layer

Parameters for ideal functionalities.

• We use a Fledger that implements the following VALIDATE predicate: the predicate
accepts if the NIZK proof π is valid and if RegIDACC has not been seen before.

• We use aFcrs functionality that outputs the public parameters for the signature scheme
and the threshold encryption scheme.

The protocol description for an account holder AH.

• On input (ISSUE, IP,AL), retrieve the public key PKIP of identity provider IP and the
vector PKAR of all public keys of the anonymity revokers via Freg and proceed as
follows:

– Generate a key pair (IDcredSEC, IDcredPUB) satisfyingR.
– Choose a random key K for PRF and compute the encryption ERegID =

TEncn,dPKAR
(K; r) with randomness r.

– Call FR,TE,BS
issue on input

(
ISSUE, (ERegID,K, r,PKAR),AL, (IDcredSEC,

IDcredPUB), IP
)

. After receiving the response σ from FR,TE,BS
issue , set

cid = (IP,AL, IDcredSEC, σ,K).

• On input (CreateACC, cid,P), proceed as follows

– If there is no record cid = (IP,AL, IDcredSEC, σ,K), then abort.
– Generate an account key pair (pkACC, skACC) satisfyingRACC.
– Compute EID = TEncn,dPKAR

(IDcredPUB; r
′).

– Compute RegIDACC = PRFK(x), where this is x’th account that is created using
cid.
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– Produce a NIZK π by calling Fnizk for statement

st = (P,EID,RegIDACC, IP, pkACC)

using secret witness

w = (σ, x, r′, IDcredSEC,K,AL, skACC, IDcredPUB)

for the relationR(st, w) that outputs ⊤ if:
1. The signature σ is valid for (IDcredSEC,K,AL) under pkIP.
2. AL satisfies the policy i.e., P(AL) = ⊤.
3. RegIDACC = PRFK(x) for some 0 < x ≤ MaxACC.
4. EID = TEncn,dPKAR

(IDcredPUB; r
′).

5. (pkACC, skACC) is a valid key pair according toRACC.
6. (IDcredSEC, IDcredPUB) is a valid key pair according toR

– Let ACI = (RegIDACC,EID, IP, pkACC,P, st, π) and SIACC = skACC. Send the
input (APPEND,ACI) to Fledger.

– Store tuple (ACI, SIACC) internally and return (Created,RegIDACC).

• On input (RETRIEVE), callFledger on input RETRIEVE. After receiving (RETRIEVE, L)
from Fledger, output L.

The protocol description for identity providers and anonymity revokers.

• On input INITIALIZE from P ∈ {IP1, . . . , IPm}, obtain crs from Fcrs, generate key
pair (skIP, pkIP)←$ KeyGen(1λ) and input (INITIALIZE, (skIP, pkIP)) to FR,TE,SIG

issue .

• On input INITIALIZE from P ∈ {AR1, . . . ,ARn}, obtain crs from Fcrs, generate key
pair (skAR, pkAR)←$ TKeyGen(1λ) and input (REGISTER, skAR, pkAR) to Freg.

• On input (ISSUE,AH) from identity provider IP, callFR,TE,SIG
issue with input (ISSUE,AH,

pkAR). After receiving the response (IDcredPUB,AL,ERegID) from FR,TE,SIG
issue , set

IPIAH = (AH, IDcredPUB,AL,ERegID).

• On input (RETRIEVE), callFledger on input RETRIEVE. After receiving (RETRIEVE, L)
from Fledger, output L.

• On input (REVOKE,RegIDACC) from an identity provider IP and a set of anonymity
revokers {ARi}i∈I⊆[n], proceed as follows:

– Anonymity revokers call Fledger on input RETRIEVE. After receiving
(RETRIEVE, L) from Fledger, they first look up ACI in L that contains
RegIDACC. Next, each ARi decrypts the EID of the ACI by computing
µi = ShareDecn,dpkI ,ski

(EID). Finally, all anonymity revokers combine their shares
and compute IDcredPUB = TCombinen,dpkI

(EID, {µi}i∈I) and return IDcredPUB to
the IP.
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– The ACI contains the public name IP of the identity provider who registered
IDcredPUB. If IP is different from the requester, then ignore. Else, the IP locates
the IPIAH = (AH, IDcredPUB,AL,ERegID) record, containing the IDcredPUB that
was decrypted and outputs AH.

• On input (TRACE,AH) from an identity provider IP and a set of anonymity revokers
{ARi}i∈I⊆[n], proceed as follows:

– IP searches the database to locate the IPIAH = (AH, IDcredPUB,AL,ERegID)
containing the relevant AH and sends ERegID via Fsmt to the set of anonymity
revokers.

– Each ARi computes Ki = ShareDecn,dpkI ,ski
(ERegID). Then, they call Fmpc-prf on

input (COMPUTE,Ki) and receive all values PRFK(x) for x = 1, . . . ,MaxACC.
These values are all the possible values for RegIDACC that the AH could have
used to form valid accounts.

3.5.2 Proof of Security for Identity Layer
Tolerated Corruptions. We prove security in two separate cases: with arbitrarily many
malicious AHs and up to threshold semi-honest ARs, or with semi honest IP and up to threshold
semi-honest ARs. Note that for technical reasons we cannot let the IP be corrupt (even if only
semi-honest) at the same time with a malicious AH, since in this case the (monolithic) adversary
would learn the secret key of the corrupt IP and would be able to forge invalid credentials for the
corrupt AH’s.
Assumptions on the environment. We consider executions with restricted adversaries and
environments, that only input attribute lists AL in the ISSUE command which are valid with
respect to the account holder. This restriction captures the fact that an honest IP in the real world
is trusted to check (by non-cryptographic means) that an account holder AH actually satisfies the
claimed attribute list AL.

Theorem 3.5.1. Suppose that TE = (TKeyGen,TEnc,TDec) is a (n, d)-threshold encryption
scheme, PRF is a weakly robust pseudorandom function, R a hard relation, and SIG =
(KeyGen, Sign,VerifySig) is a EUF-CMA signature scheme, then Πid-layer, for all restricted
environment (as defined above), securely implements Fid-layer in the {Fcrs,Freg,Fnizk,Fsmt,

FR,TE,SIG
issue ,Fledger,Fmpc-prf}-hybrid model in the presence of an actively corrupted AH, and d

semi-honest anonymity revokers AR1, . . . ,ARd, or semi-honest IP and d semi-honest anonymity
revokers AR1, . . . ,ARd.

The simulator S is internally emulating the functionalities Fcrs,Freg,Fnizk,Fsmt,FR,TE,SIG
issue ,

Fledger,Fmpc-prf . At the start S initializes empty lists listissue, listacc, listledger, listh-aid,
listh-pk, listh-sig. Here is the description of the simulator:

• Command INITIALIZE: S emulatesFcrs and generates public parameters for the signature
scheme and threshold encryption scheme. Every time an honest or semi-honest IP or AR
invokes the initialize command, the simulator generates a key-pair for them.
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• CommandISSUE. Passively corrupted IP, honestAH. The simulator receives (ISSUE,AH, IP,AL)
in case of corrupt IP from the ideal functionality Fid-layer, and has to produce a view
indistinguishable from the protocol which is consistent with this. The simulator does
so by emulating the output Fissue for IP namely (IDcredPUB,AL,ERegID) to IP where the
simulator encrypts a dummy value for ERegID and IDcredPUB is generated according toR.
The simulator adds ERegID to listh-ct and IDcredPUB to listh-pk. S adds to listissue the
entry ⟨(AH,AL, IP); (ERegID, IDcredPUB,AL)⟩.

Malicious AH, honest IP. When a corrupt AH invokes FR,TE,SIG
issue on command

(
ISSUE,

(ERegID,K, r,PKAR),AL, (IDcredSEC, IDcredPUB), IP
)

,S aborts if ERegID is not an encryption
ofK or if (IDcredSEC, IDcredPUB) is not a valid key-pair; S outputs fail if ERegID ∈ listh−ct

or if IDcredPUB ∈ listh-pk.

Otherwise, S calls command ISSUE of the functionality on input (IP,AL) and returns
cid = (IP,AL, IDcredSEC, σ,K) to AH where σ is a signature computed by S using Sign of
SIG (since the simulator is internally emulating the honest IP w.r.t. the corrupt account
holder AH). S adds (σ; (IDcredSEC,K,AL); IP) to listh-sig.

• Command CreateACC. Malicious AH. When a corrupt AH invokes Fledger on input
ACI = (st, π) (where st = (P,EID,RegIDACC, IP, pkACC)), the simulator S uses Fnizk

to extract the witness w = (σ, x, r′, IDcredSEC,K,AL, skACC, IDcredPUB) (or abort if the
proof doesn’t verify). The simulator outputs fail if one of the following condition
holds: (σ; (IDcredSEC,K,AL); IP) ̸∈ listh-sig, if IDcredPUB ∈ listh-pk, if EID ∈ listh-ct,
if RegIDACC ∈ listh-aid, or if x > MaxACC.

Otherwise the simulator inputs the CreateACC(cid,P, (skACC, pkACC)) command to the
ideal functionality and, when asked, inputs aid = RegIDACC to the ideal functionality.

Honest AH. For an honest account holder, the simulator upon receiving (CreateACC,P,
pkACC, IP) from the ideal functionality, picks a random aid in the domain of the PRF and
forwards it to the functionality (also adds it into listh-aid). Then, the simulator prepares
st = (P,EID,RegIDACC = aid, IP, pkACC) where EID is an encryption of a dummy value
(and is added to listh-ct), simulates a proof π via Fnizk and appends (st, π) to the buffer
of the ledger.

Add entry (RegIDACC,EID, IP, pkACC,P, π) in listacc.

• Command RELEASE: the simulator simulates these commands directly simulating the calls
to Fledger e.g., when the adversary invokes (RELEASE,Π) adds the permuted buffer to the
list listledger and then resets the buffer.

• Command RETRIEVE S emulates the retrieve command in Fledger and gives as output
listledger.

• Command REVOKE. Semi-honest IP and up to d AR, honest AH. When the IP and
a qualified set of AR (of which up to d are corrupt) invoke REVOKE, the simulator S
obtains RegIDACC = aid and AH from the input/output of the functionality Fid-layer. Now
S, using RegIDACC, searches listacc and retrieves the corresponding EID. Similarly,
using (AH, IP), searches listissue and retrieves the corresponding IDcredPUB. Then the
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simulator S equivocates the decryption of EID to IDcredPUB using SimShare (defined in the
simulatability property of the threshold encryption scheme).

Malicious AH and up to d AR. The simulator receives (RegIDACC,AH) from the ideal
functionality, looks up the ciphertext EID corresponding to RegIDACC and runs the threshold
decryption protocol as honest parties would do.

• Command TRACE. Semi-honest IP and up to d AR, honest AH. When the IP and a qualified
set of AR (of which up to d are corrupt) invoke TRACE, the simulator S receives AH and
a list listRegIDACC

of aid’s from the input/output of the functionality Fid-layer. Now S
recovers the ciphertext ERegID. Finally S programs the output of Fmpc-prf to be consistent
with listRegIDACC

.

MaliciousAH and up to dAR. The simulator receivesAH and a list of accounts {RegIDACC}
from the ideal functionality. The simulator looks up the ciphertext ERegID corresponding
to AH and emulates Fmpc-prf to output the list {RegIDACC}.

We now argue that the view of the environment in the real world and in the ideal world with
the simulator described above are indistinguishable.

Analysis of the Simulated Game. We first argue that the probability of the simulator outputting
fail is negligible. In the ISSUE command, since the emulation of the Fissue functionality is
unconditionally secure, the simulator outputs fail only in the following cases: 1. the adversary
submits the opening for a ciphertext ERegID generated by the simulator (whose randomness is
never used anywhere else, and for which the simulator only uses less than d shares of the secret
key). An adversary that makes the simulation fail this way can be turned into an attack on the
semantic security of the threshold encryption scheme; 2. the adversary submits the secret key
for a public key IDcredPUB generated by the simulator (whose secret key is never used by the
simulator). An adversary that makes the simulation fail this way can be turned into an attack
onto the one-wayness of the key generation algorithm (which contradicts the assumption thatR
is a hard-relation). In the CreateACC command, since the emulation of the Fnizk functionality
is unconditionally secure, and since the adversary cannot make the ledger accept replayed
accounts, the simulator outputs fail only in the following cases: 3. the adversary outputs a
message/signature pair (σ; (IDcredSEC,K,AL); IP) which passes the verification algorithm for the
public key of IP and was not generated by the simulator. An adversary that make the simulation
fail this way can be turned into an attack on the unforgeability of the signature scheme; 4. the
adversary inputs to the Fnizk functionality the secret key for a public key IDcredPUB generated by
the simulator (see bullet 2. above); 5. the adversary submits the opening for a ciphertext EID
generated by the simulator (see bullet 1. above); 6. the adversary inputs to the Fnizk functionality
an account id RegIDACC, together with the key K and input x such that RegIDACC = PRF(K, x)
and that same RegIDACC also had been chosen at random by the simulator when simulating an
honest party. An adversary that can make the simulation fail this way can be turned into an attack
on the weak robust property of the PRF. 7. the adversary creates an account with x ≥ MaxACC.
Since the Fnizk is emulated with unconditional security, the probability that the simulator outputs
fail in this way is 0.

We now slowly turn the simulated game into the real protocol via a series of hybrids.
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Hybrid 0. This is the simulated protocol with the exception that we never output fail.
As argued above, the probability that the simulator outputs fail is negligible, therefore the
distribution generated by the simulated game and this hybrid is computationally close.

Hybrid 1. In the first hybrid we change the way in which the simulator samples the account
id’s aid for for honest AH. Now, instead of picking random values, the simulator picks keys
K for each pair of honest account holders and certificate id (AH, cid) and computes the aid as
PRFK(x) where x counts how many accounts were opened by that account holder for that cid.
An adversary that can distinguish between this hybrid and the simulated protocol can be used to
break the pseudorandomness property of PRF.

Hybrid 2. In the second hybrid we change the way in which the simulator generates the
ciphertexts EID for the honest parties during the simulation of CreateACC. Now the simulator
encrypts the value IDcredPUB corresponding to the certificate cid of the account holder AH. An
adversary that can distinguish between this hybrid and the previous one can be used to break the
semantic security of the threshold encryption scheme.

Hybrid 3. In the third hybrid we change the way in which the simulator generates the ciphertexts
ERegID for the honest parties during the simulation of ISSUE. Now the simulator encrypts the
value K corresponding to the certificate cid of the account holder AH, consistently with the value
of K which had been sampled for that cid in hybrid 1. An adversary that can distinguish between
this hybrid and the previous one can be used to break the semantic security of the threshold
encryption scheme.

Hybrid 4. In the fourth hybrid we change the behaviour of the simulator during REVOKE for
honest AH. Now we let the simulator run the threshold decryption protocol honestly. Note that,
since we changed the encryptions ERegID in a previous hybrid to encrypt the right value, the
output of the decryption in this and the previous hybrid is identical. Hence, an adversary that
can distinguish between this and the previous hybrid can be used to break the partial decryption
simulatability (PDS) of the threshold encryption scheme.

Hybrid 5. In this hybrid we change the behaviour of the simulator during TRACE for honest AH.
Now we let the simulator run the code of Fmpc-prf honestly instead of programming the output of
the functionality. Note that, since we changed the encryptions EID in a previous hybrid to encrypt
the right value, the output of the decryption in this and the previous hybrid is identical. Since
the simulation of Fmpc-prf is perfect, this hybrid is identically distributed to the previous one.

Hybrid 6. In the final hybrid we change the behaviour of the simulator when simulating the
proofs π for honest account holders AH. Up until now the simulator had simply picked random
strings π, stored them together with the statement x, and then emulated the answers to VERIFY

queries of the adversary for such proofs by outputting 1 on behalf of the Fnizk functionality. Now
instead the simulator runs the code of the functionality Fnizk, that is it only outputs that a proof
is valid if it can come up with a witness for it. Note that, since we changed all elements in
the statement (the encryption, the account id, etc.) in previous hybrids to match the behaviour
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of a honest account holder, the simulator knows the necessary witnesses, thus the previously
simulated proofs still verify, and this hybrid is identically distributed to the previous one.

Since hybrid 6 is identical to the real protocol (that is, the real protocol run in the hybrid
world where all the helping functionalities are available), this concludes the proof.

3.5.3 Credential Issue Protocol

The issue protocol Πissue uses as its main ingredient a two-round blind signature scheme (as
defined in Section 3.2.4), augmented with a NIZK that proves that the input to the blind-signature
protocol is consistent with the ciphertext and the public-key that the account holder sends to the
identity provider.

Protocol Issue Πissue

The protocol operates in the {Fcrs,Freg,Fnizk,Fsmt}-hybrid model. Let BS =
(Setup,KeyGen, Sign1, Sign2,Unblind,VerifySig) be a blind signature scheme and TE =
(TKeyGen,TEnc,TDec) be a (n, d)-threshold encryption scheme, and R an NP relation
corresponding to the account holder’s key pair.

• Upon input (SETUP), use FSetup
crs to generate pp←$ Setup(1λ) and publicize it to all

parties.

• Upon input (INITIALIZE, (skIP, pkIP)), the identity provider IP checks if the key pair
has a correct distribution with respect to the KeyGen(pp). If yes, stores (skIP, pkIP)
and sends (REGISTER, skIP, pkIP) to Freg.

• Upon an input
(
ISSUE, (ct,m, r, pkAR), aux, (skAH, pkAH), IP

)
to the account holder

AH and an input (ISSUE,AH, pkAR) to an identity provider IP, proceed as follows:

1. AH retrieves pkIP from Freg, computes sign1 = Sign1(pkIP, (skAH,
m, aux), pp; r′) and sends (PROVE, st, w) to Fnizk for statement st =
(pkAH, sign1, ct, aux, pp) using secret witness w = (skAH,m, r′, r) for the
relationR1(st, w) that outputs ⊤ if:

a) (skAH, pkAH) ∈ R.
b) sign1 = Sign1(pkIP, (skAH,m, aux), pp; r′).
c) ct = TEncn,dPKAR

(m; r)

2. Upon receiving the proof π, AH sends (SEND, IP, (st, π)) to Fsmt.
3. Upon receiving (SENT,AH, (st, π)) from Fsmt, IP inputs (VERIFY, st, π) (for

relation R1) to Fnizk. If they pass, IP computes and sends (through Fsmt)
sign2 ← Sign2(skIP, sign1).
AH runs Unblind(sign2, r′) and obtains a signature σ on (skAH,m, aux).
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3.5.4 Proof of Security for Issue Protocol
Theorem 3.5.2. Assume that BS = (Setup,KeyGen, Sign1, Sign2,Unblind,VerifySig) is a blind
signature scheme. Then, Πissue securely implements Fissue in the {Fcrs,Freg,Fnizk,Fsmt}-hybrid
model in the presence of an actively corrupted AH or a passively corrupted IP.

Proof. We consider corruptions of AH and IP separately.
(Actively) Corrupt AH. The simulator for a corrupt AH receives (st, π) from the Fsmt func-
tionality and extracts the witness w from Fnizk (or abort if the proof doesn’t verify). Now the
simulator can input the ISSUE command to the ideal functionality which includes the message
and randomness used to generate ct, the auxiliary information, and the account public and secret
keys. The simulator therefore receives a signature σ from the ideal functionality. Using the
simulator guaranteed from the simulatability property (Definition 3.2.7), the simulator computes
the appropriate sign2 message. Note that we can use this simulator since (due to the soundness
of the NIZK) we know that sign1 was computed according to the protocol and our simulator
knows the message m and the randomness r′ which is used by the adversary to do so.

We claim that this simulation is indistinguishable from the real protocol. To see why, notice
that the output of the IP is identical in the real and ideal world (remember that in the Fnizk

hybrid model the proofs are unconditionally sound). Moreover, the view of the corrupted AH
consists only of the message sign2. Therefore, an adversary that can distinguish between the
real and simulated protocol can directly be turned into an adversary that breaks the simulatability
property (Definition 3.2.7) of the blind signature scheme.
(Passively) Corrupt IP. The case of a corrupted IP is relatively simple since we only consider
passively corrupt IP: Here the simulator gets the input and output of the IP from the ideal
functionality (which consists of the account public key, the ciphertext, and the auxiliary
information), and has to produce a view indistinguishable from the protocol which is consistent
with this output. The simulator does so by computing the first message of the blind signature
sign1 by running Sign1 with some dummy input. Note that all other parts of the statement st
are at this point known to the simulator, which therefore only needs to simulate the proof π, but
this is trivial to do in the Fnizk-hybrid model by simply appending an arbitrary proof π∗ to the
view, and then answering verify queries so that π∗ is a valid proof for the statement st.

We claim that this simulation is indistinguishable from the real protocol. To see why, notice
that the only difference in the view of IP between the real and simulated protocol is in the
distribution of sign1 and therefore an adversary that can distinguish between the real and
simulated protocol can directly be turned into an adversary that breaks the blindness property
(Definition 3.2.6) of the blind signature scheme.

Finally, note that at first glance it might appear strange that the proof does not mention at all
the security of the threshold encryption scheme. However, this is because our ideal functionality
just guarantees that the ciphertext is correctly computed according to the encryption algorithm.
Thus, our protocol securely implements the functionality regardless of which security (if any) is
guaranteed by the encryption scheme!

3.6 Implementation Details
This section contains a detailed description of the protocols to implement for the ID layer.
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3.6.1 Auxiliary Σ-protocols.

Let (p,G1,G2,GT , ê, g1, g2) be a bilinear group as defined in 2.6.2. In the Σ protocols described
in the following we assume that all group elements and commitment keys and public keys for
signature and encryption schemes come from a group of order p, where in some cases it does
not matter if we use G1, G2 or GT , but there are also cases where a particular group has to
be used. The protocol applying a Σ-protocol will specify which group is used. We denote
by PK{(x, y, · · · ) : statements about x, y}, a zero knowledge proof of knowledge of x, y, · · ·
that satisfies statements. Here, x, y, · · · are private (witness), and other values in statements
are public. The sigma protocols we describe below are standard protocols that have appeared
in other works [42, 151] and follow from the pre-image protocol of Maurer [133] for proving
knowledge of a pre-image of a group homomorphism that unifies and generalizes a large class of
protocols in literature.

3.6.2 Using Fiat-Shamir for non-interactive Proof

All Σ protocols below are described as interactive 2-party protocols. When using them for
non-interactive proofs, we use the Fiat-Shamir paradigm with hash function H to replace a
random oracle. More precisely, this will be done as follows: Suppose the messages in the
protocol are (a, c, z), where c is the random challenge from the verifier, and where x is the public
input. Then the prover executes the protocol on his own as follows: they compute a first, and
thenH(x, a). They set c to be the first ⌊log2 p⌋ bits of the hash value. Finally they compute the
last message z. The non-interactive proof is (c, z).

To verify a proof we use the fact that all our Σ protocols have a verification equation that
allows you to compute a from x, c and z. So given x and e, z, the verifier computes a,H(x, a)
and compares c to the first ⌊log2 p⌋ bits of the hash value.

If a proof consists of several, say T Σ protocols, we do them all in parallel as follows: the
prover computes all T first messages and concatenates them to get M1. Then they compute
H(X,M1) where X is the concatenation of all public inputs to the protocols. They set c to be the
first ⌊log2 p⌋ bits of the hash value. Finally they compute the T last messages and concatenates
them all to get M2. The non-interactive proof is (c,M2).

To verify X and (c,M2), where X contains all the public inputs, the verifier splits M2 into T
individual last messages. As above, they use the verification equations to compute the T first
messages. They concatenate them to get M1, computesH(X,M1) and sets c to the first ⌊log2 p⌋
bits of the hash value.

3.6.3 Sigma protocol for proving knowledge of discrete log

51



Protocol dlog : PK{(x) : y = gx}

• The prover computes and sends a = gα for randomly chosen α ∈ Z∗
p.

• The verifier sends a random challenge c at random from Zp.

• The prover sends z = α + cx mod p

• The verifier checks if a = g−zyc. If yes, the verifier accepts.

We describe here for completeness the non-interactive variant using Fiat-Shamir but remember
that this approach will be used in parallel for several protocols for applications that require more
than one Sigma protocol.

Protocol NI dlog : PK{(x) : y = gx}

• The prover computes a = gα for randomly chosen α ∈ Z∗
p, c = H(y||a), z = α + cx

and sends (c, z) to the verifier.

• The verifier computes if a = y−cgz and checks that c = H(y||a). If yes, the verifier
accepts.

3.6.4 Sigma protocol for proving equality of committed value and
Elgamal encrypted value

The prover has produced an ElGamal encryption (e1, e2) = (gR1 , g
x
1h

R
1 ) under public key g1, h1

that is an encryption of gx1 with randomness R. They have also committed to x: C = gxhr and
wants to show that the same x appears in the encryption and in the commitment.

Protocol com−enc−eq : PK{(x, r, R) : e1 = gR1 ∧ e2 = gx1h
R
1 ∧ C = gxhr}

1. The prover computes a1 = gα1 , a2 = gβ1h
α
1 , a3 = gβhγ for randomly chosen α, β, γ ∈

Z∗
p and sends (a1, a2, a3) to the verifier.

2. The verifier sends a random challenge c at random from Zp.

3. The prover computes z1 = α+cR mod p, z2 = β+cx mod p, z3 = γ+cr mod p
and sends (z1, z2, z3) to the verifier.

4. The verifier checks if a1 = g−z1
1 ec1, a2 = g−z2

1 h−z1
1 ec2, a3 = g−z2h−z3Cc. If yes, the

verifier accepts.

3.6.5 Proof of Equality of Aggregated Discrete Logs & Commitments
We now describe a protocol for proving equality of the discrete logarithms (a1, . . . , an) in
y =

∏n
i=1G

ai
i and individual algebraic commitments to them. Using standard notation, we denote
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the protocol byPK{(a1, . . . , an, r1, . . . , rn) : y =
∏n

i=1 G
ai
i ∧C1 = ga1hr1∧· · ·∧Cn = ganhrn}.

Let G, H be groups of prime order p. Given y =
∏

Gai
i and Ci = gaihri , where Gi are

generators of the group G, g is a generator of H and h is a random element in H. The prover
does not know the discrete logarithm of h with respect to g, and the discrete logarithms of Gis
with respect to each other. We want to prove equality of the discrete logarithms in y and the
respective values committed to in Cis.

Protocol comEq : PK{(a1, . . . , an, r1, . . . , rn) : y =
∏n

i=1G
ai
i ∧C1 = ga1hr1∧· · ·∧Cn =

ganhrn}

Given y =
∏n

i=1G
ai
i and Ci = gaihri

1. The prover computes the following values: u =
∏n

i=1G
αi
i and vi = gαihRi for

randomly chosen αi, Ri ∈ Zp and sends u, vi to the verifier.

2. The verifier chooses a challenge c at random from Z2k for a fixed k, such that 2k < p,
and sends it to the prover.

3. For a challenge string c, prover computes and sends the tuple (si, ti)

si = αi − cai (mod p), ti = Ri − cri (mod p)

4. Verification: Check if u = yc
∏

Gsi
i and vi = (Ci)

cgsihti . The verifier accepts if
checks succeed for all i.

3.6.6 Proof of Aggregated Discrete Logs
This is a specialization of the previous protocol and proves knowledge of discrete logarithms
(a1, . . . , an) in y =

∏n
i=1G

ai
i . Protocol is denoted by PK{(a1, . . . , an) : y =

∏n
i=1G

ai
i }.

The protocol is derived by simply ignoring in the previous protocol everything related to the
commitments Ci.

Protocol AggregateDL : PK{(a1, . . . , an) : y =
∏n

i=1 G
ai
i }

Given y =
∏n

i=1G
ai
i

1. The prover computes the following values: u =
∏n

i=1 G
αi
i for randomly chosen

αi ∈ Zp and sends u to the verifier.

2. The verifier chooses a challenge c at random from Z2k for a fixed k, such that 2k < p,
and sends it to the prover.

3. For a challenge string c, prover computes and sends the tuple (si)

si = αi − cai (mod p)

4. Verification: Check if u = yc
∏

Gsi
i . The verifier accepts if checks succeed for all i.
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3.6.7 Proof of Equality for Commitments in Different Groups
This is essentially a specialization of the protocol from section 3.6.5. Assume we have discrete
logarithms (a1, a2) in y = Ga1

1 Ga2
2 which can be seen as a commitment to a1 with randomness

a2, as well as a commitment to a1 in a different group. Using standard notation, we denote the
protocol by PK{(a1, a2, r) : y = Ga1

1 Ga2
2 ∧ C = ga1hr}.

Let G, H be groups of prime order p. Given y = Ga1
1 Ga2

2 and C = ga1hr, where Gi are
generators of the group G, g is a generator of H and h is a random element in H. The prover
does not know the discrete logarithm of h with respect to g, and the discrete logarithms of Gis
with respect to each other. We want to prove that y and C are commitments to the same value.

Protocol PK{(a1, a2, r) : y = Ga1
1 Ga2

2 ∧ C = ga1hr}

Given y = Ga1
1 Ga2

2 and C = ga1hr

1. The prover computes the following values: u = Gα1
1 Gα2

2 and v = gα1hR for randomly
chosen αi, R ∈ Zp and sends u, v to the verifier.

2. The verifier chooses a challenge c at random from Z2k for a fixed k, such that 2k < p,
and sends it to the prover.

3. For a challenge string c, prover computes and sends the tuple (s1, s2, t), computed as
follows:

s1 = α1 − ca1 (mod p), s2 = α2 − ca2 (mod p), t = R− cr (mod p)

4. Verification: Check if u = yc
∏

Gs1
1 Gs2

2 and v = Ccgs1ht. The verifier accepts if all
checks succeed.

3.6.8 Proof of multiplicative relation on committed values
This protocol proves, for committed values a1, a2, a3 in commitments C1, C2, C3, that a1a2 =
a3 mod p. Protocol is denoted by PK{(a1, a2, a3, r1, r2, r3) : Ci = gaihri for i = 1..3 ∧ a1a2 =
a3 mod p}.

Protocol comMult : PK{(a1, a2, a3, r1, r2, r3) : Ci = gaihri for i = 1..3 ∧ a1a2 =
a3 mod p}

Given Ci = gaihri for i = 1, 2, 3, we will prove the relation a1a2 = a3 mod p by proving
that C3 = Ca2

1 hr in parallel with proving that Ci = gaihri for i = 1, 2, 3. The condition is
satisfied if we set r = r3 − r1a2 mod p, so the prover can do this.
If the proof succeeds, it follows that C3 can be opened to both a3 and a1a2, so we get what
we want unless the binding condition is broken.

1. The prover computes the following values: vi = gαihRi for i = 1, 2, 3, v = Cα2
1 hR

for randomly chosen αi, Ri, α, R ∈ Zp and sends {vi}, v to the verifier.
Note that v will later be used in a verification equation to test C3 = Ca2

1 hr. This is
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why we need to use α2 in the exponent of C1 in the expression for v.

2. The verifier chooses a challenge c at random from Z2k for a fixed k, such that 2k < p,
and sends it to the prover.

3. For a challenge string c, prover computes and sends the tuple (si, ti) for i = 1, 2, 3
and t:

si = αi − cai (mod p), ti = Ri − cri (mod p), t = R− cr (mod p)

4. Verification: Check if vi = (Ci)
cgsihti for i = 1, 2, 3 and v = Cc

3C
s2
1 ht. The verifier

accepts if all checks succeed.

3.6.9 Protocol for Πissue

Protocol For proving that ct = TEncn,dPKAR
(m; r)

Recall that we follow the share-and-encrypt paradigm for the threshold encryption by using
Shamir Secret sharing and the CL encryption scheme. This means that the encryption of m
is supposed to be consisting of n ciphertexts CL.Enc(pkARi

, sh(m)i) for i = 1, . . . , n where
sh(m)i is the i’th share of m.
Let M ′ be the commitment of m on group G̃. The prover AH proves to the verifier IP that
M ′ contains the same value m as does ct:

1. AH makes a commitment B0 to m under the default commitment key ck (which is in
the CRS), so B0 ∈ H. They use the protocol from Section 3.6.7 to show that M ′ and
B0 both contain m.

2. AH establishes a commitment Mi to each share sh(m)i of m as follows: when AH
secret-shares m, they use a polynomial g to get shares sh(m)i. Let the coefficients of
g be b0 = m, b1, ..., bd. Note that we have sh(m)i = g(i) =

∑d
j=0 bj · ij . Now, the

AH makes and sends commitments Bj to bj , where we notice that B0 has already
been constructed above. Using the homomorphic property of commitments one can
compute Ki =

∏d
j=0B

ij

j which is a commitment to sh(m)i. Since AH, the prover,
has created the Bi’s, they also know how to open the Ki’s.

3. AH finally runs a protocol similar to com−enc−eq from section 3.6.4 but for the CL
encryption scheme to show the IP that each CL.Enc(pkARi

, sh(m)i) contains the same
value as Ki for i = 1...n.
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3.6.10 Protocol for Πid−layer

Proving that you know a signature. The user has a signature σ = (a, b) on a message
(m0, ...,mℓ) and wants to convince a verifier of this fact. This is done as follows:

Protocol For proving knowledge of a signature

1. Choose r, r′ ← Fp, and compute a blinded version of the signature as follows:

â = ar, b̂ = (b · ar′)r

and sends the blinded signature (â, b̂) to the verifier.

2. Both parties compute locally the following values:

v1 = ê(â, g2), v2 = ê(b̂, g2), v3 = ê(â, X̃), ui = ê(â, Ỹi)

3. The verifier checks that â ̸= 1G1 . If not, the verifier rejects. The user gives a ZK
proof of knowledge:

PK((m0, ...,mℓ, r
′) : v2 = v3 · vr

′

1

ℓ∏
i=1

umi
i )

4. The verifier accepts if the proof is valid.

Adaptation for Implementing Πid−layer. In the ID layer, the AH will act as user/prover
and anyone else can act as verifier. However, the above protocol needs to be further
adapted so we can show specific properties of attributes: recall that we set (m0, ...,mℓ) =
(r, IDcredSEC,K, a1, ..., av), padding the right-hand side with 0’s if needed to get ℓ entries.
The AH can supply also commitments to all fields and attributes: i = 1...ℓ : Ci =
Commitck(mi, ri). So we execute the protocol exactly as specified above, but the proof of
knowledge in step 3 is extended as follows:

PK((m0, ...,mℓ, r
′) : v2 = v3 · vr

′

1

ℓ∏
i=1

umi
i , Ci = Commitck(mi, ri) for i = 1...ℓ).

For this proof of knowledge, we use the comEq protocol from section 3.6.5-
The AH can now use the Ci to prove desired properties of the fields and attributes.

Protocol For proving that RegIDACC = PRFK(x) for some x ≤ MaxACC

Recall that PRFK(x) = ḡ1/(x+K). This value can be seen as Commitck(1/(K+x)) where the
randomness is 0. Let C1 = Commitck(K) and C3 = Commitck(a1) = Commitck(MaxACC).

1. AH makes commitments Fx = Commitck(x) and F1 = g which can be written as
Commitck(1) where the randomness is 0. Note that C1Fx = Commitck(K+ x).
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2. AH runs Protocol comMult from Section 3.6.8 with input commitments
C1Fx,RegIDACC and F1. This shows that RegIDACC = PRFK(x).

3. AH finally uses a zkSNARK on committed inputs based on Fx and C3 to show that
x ≤ MaxACC.

Protocol For proving that EID = TEncn,dPKAR
(IDcredPUB; r

′)

Let C0 be the commitment to IDcredSEC. Recall that we follow share-and-encrypt paradigm
for the threshold encryption (see 3.2.6) which means in order to encrypt IDcredPUB correctly,
AH first secret shares IDcredSEC using a polynomial f to get shares sh(IDcredSEC)i and then
computes the i’th component of EID as Elgamal encryption EncpkARi (ḡ

sh(IDcredSEC)i ; r′i). Let
the coefficients of f be a0 = IDcredSEC, a1, ..., ad. Note that we have sh(IDcredSEC)i = f(i) =∑d

j=0 aj · ij. Now,

1. AH makes commitments Aj to aj , where we set A0 = C0. Using the homomorphic
property of commitments one can compute Si =

∏d
j=0A

ij

j which is a commitment
to sh(IDcredSEC)i. Since AH, the prover, has created the Ai’s, they also know how to
open the Si’s.

2. For i = 1...n, the AH runs the protocol com−enc−eq from section 3.6.4 using the
two components in EpkARi

(ḡsh(IDcredSEC)i ; r′i) as e1, e2 and Si as C.

3.7 Putting Everything Together
We presented all components of the system in a modular way. We now describe how to instantiate
each of the components needed in the ID-layer.

UC-NIZK. We use two different types of non-interactive zero knowledge proofs in our
implementation. One is based on Σ-protocols made non-interactive with the Fiat-Shamir (FS)
transform [84], and the other is preprocessing-based zkSNARKs [99, 141] in the crs model.
Unfortunately, known instantiations of both types of NIZKs do not satisfy UC-security.

In order to lift SNARK to be UC-secure we use the transformation of Kosba et al. [127]. At
a high level, the transformation works having the prover prove an augmented relation RL′ as
follows: a pair of one-time signing/verification keys are generated for each proof. The prover is
additionally required to show that a ciphertext encrypts the witness of the underlying relation
RL, or the PRF was correctly evaluated on the signature key under a committed key. Then
the prover is required to sign the statement together with the proof of L′. Since our goal is to
use SNARKs on small circuits for the purposes of prover efficiency, we treat the augmented
relation RL′ as a composite statement [9, 48] and use a combination of SNARKs and sigma
protocols to prove the augmented relation of the transformation. We use the CL scheme [54]
for encryption, and fk : x→ H(x)k, for k ∈ Zq as the PRF where H maps bit strings to group
elements. This PRF can be shown to be secure under the DDH assumption where H is modeled
as a random oracle. We can use a sigma protocol to prove correct evaluation of the PRF given
public input, public output, and committed key gk. A standard sigma protocol proof of equality
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of discrete logarithms can be used to prove equality of CL encrypted and Pedersen committed
messages. The composition theorem from [9] can be invoked to argue security of the NIZK for
the composite statement formed as the AND of the statements of the lifting transformation.

In [70], we show that a simulation-sound NIZK (such as Fiat-Shamir as shown in [81])
and a perfectly correct CPA-secure encryption scheme are sufficient to instantiate a simulation-
extractable NIZK by transforming the relation to include a ciphertext encrypting the witness.6

While this lifting technique for transforming a (sound) NIZK to a knowledge-sound NIZK is
folklore, the use of CL encryption scheme [54] for this goal is novel up to our knowledge. Our
choice of the CL encryption scheme in the transformation means that we can at the same time
encrypt messages in the same plaintext space as the commitment schemes (thus allowing for
efficient proofs of equality of discrete logarithms), and guarantee efficient decryption by the
extractor. This is as opposed to using e.g., Paillier (where we could have efficient decryption
but would need range proofs to prove equality of exponents in different groups) or ElGamal “in
the exponent” (where the group order could be the same but efficient decryption can only be
achieved by encrypting the witness in short chunks).

Implementation of Πissue. We instantiate the blind signature scheme BS by the Pointcheval-
Sanders (PS) signature scheme [145]. We recall the PS scheme in Section 3.2.4, and prove that
the PS signature satisfies the definitions of Blindness 3.2.6 (here we prove a stronger variant than
what given in the original paper) and Simulatability 3.2.7 (which we define, as it is needed for
proving UC security of the overall construction). We adopt the threshold encryption TE scheme
(Definition 3.2.12) described in [74] which follows the share and encrypt paradigm. We use the
CL encryption scheme [54] to encrypt. Once again, our choice of CL encryption scheme means
that we can at the same time encrypt messages in the same plaintext space as the commitment
schemes (for efficient equality proofs) and guarantee efficient decryption when needed in the
TRACE command by the ARs.

We now describe the Σ-protocols we use to prove relation R1 in Πissue. We let R be the
discrete log relation where pk = gsk. Then, we can prove that public keys and secret keys satisfy
R using the standard Σ-protocol dlog from Section 3.6.3. The message output by Sign1 in the PS
blind signature is essentially a Pedersen commitment for vectors (see Section 3.2.4). So we prove
that Sign1 was executed correctly using the AggregateDL protocol described in Section 3.6.6
(note that due to the homomorphic nature of Pedersen commitment we don’t need to prove that
the values in the AL which are leaked to the IP are correct, since both parties can add those
to the commitment “in public”). Finally, we use the protocol in Section 3.6.9 for proving that
the ciphertext encrypts the right value, and use standard “AND” composition of Σ-protocols to
assert that the values appearing in different proofs are consistent.

Implementation of Πid−layer. We instantiate the weakly robust PRF scheme (Definition 3.2.2)
with Dodis-Yampolskiy PRF [77]. In this case we use ElGamal as the base encryption scheme
for the “share-and-encrypt” ad-hoc threshold encryption scheme TE (Definition 3.2.6). This
is because we are encrypting the public key as a group element, which can also be seen as
an encryption of the secret key for “ElGamal in the exponent”. Note that this allows to both
easily prove knowledge of the secret key, and to make sure that the AR’s will only learn the
AH public key when decrypting. Due to the algebraic nature of the DY PRF, we can efficiently
evaluate it inside an MPC protocol as required to implement Fmpc-prf using techniques described
in [68, 153].

6The notions of black-box simulation extractable NIZK and UC-secure NIZK are interchangeable [53, 113].
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When creating a new account, we use both SNARKs and Sigma protocols for proving a
single composite statement consisting of a circuit-part and an algebraic part using the technique
of [9] to obtain SNARK on algebraically committed input. This commitment is used to tie the
witness of the Sigma protocol to the witness used in the SNARK. We describe briefly how we
use a combination of Σ-protocols and SNARKs in order to prove relation R in Πid−layer. We
use the protocol in Section 3.6.10 for proving knowledge of a signature. We use SNARKs
on committed input to prove that account holder’s attribute list satisfies a certain policy, and
for proving that x ≤ MaxACC for committed x and public MaxACC. The protocols for proving
that RegIDACC = PRFK(x) and EID = TEncn,dPKAR

(IDcredPUB) are described in Section 3.6.10.
Note that all the Σ-protocol proofs are made non-interactive using Fiat-Shamir as discussed
in Section 3.6.2.

3.8 Transaction Layer
Our paper shows how account holders in our design can create accounts after registering with
identity providers. As we have seen, an account includes an account-specific public key where
the account holder has the private key. Since our protocol is completely generic, the “key” can
in fact be a vector of keys which includes a key for encryption, one for signatures, etc. and
therefore accounts can be used for transactions in many different ways.

In this section, we include an informal presentation of one way in which accounts can be
used for transferring money on the blockchain, assuming each account has a public signing key
and a public encryption key. We stress that this is just as example of one of many possible ways
of doing this and, as we prove our ID layer secure in the UC framework one can use our ID layer
with any other transaction layer, or even other applications not involving payments.

The system we sketch supports plaintext transactions and encrypted transactions. All
transactions must be signed by the account holder from which the transaction originates. When
a transaction is published, the ledger will check the signature and allow the transaction to go
through if the signature is valid, and possibly if other constraints (described in detail below) are
satisfied. Note that payments are linked to the sending and the receiving account and if several
payments are made between the same accounts this will be visible on chain. We allow this to
have a trade-off between efficiency and privacy: one can make several payments from an account
and only suffer the cost of opening it once. On the other hand, one can also choose to use each
account once for complete privacy.

Let ACC be an account with encryption key ekACC. An account will hold a public amount
p and a secret amount s. The secret amount is represented as a set S = {Si}|S|i=1, where
Si = EncekACC(si) and s =

∑
i si.

Plaintext Transactions.

Plaintext transactions happens by a matched reduction and increment of the public amounts on
the sending and receiving accounts.

Encrypted Transactions.

Let S1 = {Si}ni=1 be the representation of the secret amount for account ACC1 owned by AH1,
where Si = EncekACC1 (si). To do an encrypted transaction of amount a from ACC1 to some
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account ACC2, AH1 proceeds as follows:

1. Compute s′ =
∑n

i=1 si − a.

2. Create S ′ = EncekACC1 (s
′).

3. Create A = EncekACC2 (a).

4. Compute a NIZK proof π that (S ′, A, S1, . . . , Sn) contains numbers (s′, a, s1, . . . , sn)
such that

a ≥ 0, (3.1)
s′ ≥ 0, (3.2)

s′ =
n∑

i=1

si − a. (3.3)

The transaction contains (S ′, A, π). When the transaction is executed, the ledger checks the
proof and if it is valid, then let S1 = {S ′} and S2 = S2 ∪ {A}, where S2 is the representation of
the secret amount for ACC2.

Compressing an account.

From the above, it follows that after receiving some number of transactions, the receiving account
will contain several encrypted amounts, and this may become impractical to handle at some
point. Also, note that an account owner does not actually know the amount on his account until
he has decrypted the transactions that come into his account. To solve this, the account owner of
ACC2 can execute a compression transaction, which works as follows:

1. Let S = {Si} be the representation of existing secret amount for ACC2. Use decryption
key dkACC2 to decrypt all Si and let s be the sum of the decrypted amounts. Compute
e = EncekACC2 (s) and let S ′ = {e}. Compute a NIZK proof π showing that e contains the
sum of the amounts in the Si’s.

2. publish a compression transaction that contains the identity of the account and S ′, π.

When a compression transaction appears, the ledger checks the proof π and if it is valid, then
update the account of ACC2 to contain S ′ instead of S.
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Chapter 4

What Makes Fiat–Shamir zkSNARKs
(Updatable SRS) Simulation Extractable?

This chapter presents our results on simulation extractability of Fiat-Shamir zkSNARKs in the
updatable setting. The contents of this chapter are taken almost verbatim from [93], where we
first presented these results.

4.1 Introduction
Zero-knowledge proof systems, which allow a prover to convince a verifier of an NP statement
R(x,w) without revealing anything else about the witness w have broad application in cryp-
tography and theory of computation [23, 87, 106]. When restricted to computationally sound
proof systems, also called argument systems1, proof size can be shorter than the size of the
witness [40]. Zero-knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs)
are zero-knowledge argument systems that additionally have two succinctness properties: small
proof sizes and fast verification. Since their introduction in [135], zk-SNARKs have been a
versatile design tool for secure cryptographic protocols. They became particularly relevant for
blockchain applications that demand short proofs and fast verification for on-chain storage and
processing. Starting with their deployment by Zcash [25], they have seen broad adoption, e.g.,
for privacy-preserving cryptocurrencies and scalable and private smart contracts in Ethereum.

While research on zkSNARKs has seen rapid progress [24, 26, 35, 99, 115, 116, 129, 130, 141]
with many works proposing significant improvements in proof size, verifier and prover efficiency,
and complexity of the public setup, less attention has been paid to non-malleable zkSNARKs
and succinct signatures of knowledge [42, 59] (sometimes abbreviated SoK or referred to as
SNARKY signatures [16, 117]).

Relevance of simulation extractability. Most zkSNARKs are shown only to satisfy a standard
knowledge soundness property. Intuitively, this guarantees that a prover that creates a valid proof in
isolation knows a valid witness. However, deployments of zkSNARKs in real-world applications,
unless they are carefully designed to have application-specific malleability protection, e.g. [25],
require a stronger property – simulation-extractability (SE) – that corresponds much more closely
to existential unforgeability of signatures.

1We use both terms interchangeably.

61



This correspondence is made precise by SoK, which uses an NP-language instance as the
public verification key. Instead of signing with the secret key, SoK signing requires knowledge
of the NP-witness. Intuitively, an SoK is thus a proof of knowledge (PoK) of a witness that is
tied to a message. In fact, many signatures schemes, e.g., Schnorr, can be read as SoK for a
specific hard relation, e.g., DL [78]. To model strong existential unforgeability of SoK signatures,
even when given an oracle for obtaining signatures on different instances, an attacker must
not be able to produce new signatures. Chase and Lysyanskaya [59] model this via the notion
of simulation extractability which guarantees extraction of a witness even in the presence of
simulated signatures.

In practice, an adversary against a zkSNARK system also has access to proofs computed
by honest parties that should be modeled as simulated proofs. The definition of knowledge
soundness (KS) ignores the ability of an adversary to see other valid proofs that may occur
in real-world applications. For instance, in applications of zkSNARKs in privacy-preserving
blockchains, proofs are posted on-chain for all blockchain participants to see. We thus argue
that SE is a much more suitable notion for robust protocol design. We also claim that SE has
primarily an intellectual cost, as it is harder to prove SE than KS—another analogy here is
IND-CCA vs IND-CPA security for encryption. However, we will show that the proof systems
we consider are SE out-of-the-box.

Fiat–Shamir-based zkSNARKs. Most modern zkSNARK constructions follow a modular
blueprint that involves the design of an information-theoretic interactive protocol, e.g. an
Interactive Oracle Proof (IOP) [27], that is then compiled via cryptographic tools to obtain
an interactive argument system. This is then turned into a zkSNARK using the Fiat-Shamir
transform. By additionally hashing the message, the Fiat-Shamir transform is also a popular
technique for constructing signatures. While well-understood for 3-message sigma protocols
and justifiable in the ROM [20], Fiat–Shamir should be used with care because there are
both counterexamples in theory [107] and real-world attacks in practice when implemented
incorrectly [136].

In particular, several schemes such as Sonic [132], Plonk [91], Marlin [62] follow this
approach where the information-theoretic object is a multi-message algebraic variant of IOP,
and the cryptographic primitive in the compiler is a polynomial commitment scheme (PC)
that requires a trusted setup. To date, this blueprint lacks an analysis in the ROM in terms of
simulation extractability.

Updatable SRS zkSNARKs. One of the downsides of many efficient zkSNARKs [72, 99, 115,
116, 129, 130, 141] is that they rely on a trusted setup, where there is a structured reference string
(SRS) that is assumed to be generated by a trusted party. In practice, however, this assumption is
not well-founded; if the party that generates the SRS is not honest, they can produce proofs for
false statements. If the trusted setup assumption does not hold, knowledge soundness breaks
down. Groth et al. [120] propose a setting to tackle this challenge which allows parties – provers
and verifiers – to update the SRS.2 The update protocol takes an existing SRS and contributes to
its randomness in a verifiable way to obtain a new SRS. The guarantee in this updatable setting
is that knowledge soundness holds as long as one of the parties updating the SRS is honest. The
SRS is also universal, in that it does not depend on the relation to be proved but only on an upper

2This can be seen as an efficient player-replaceable [104] multi-party computation.

62



bound on the size of the statement’s circuit. Although inefficient, as the SRS size is quadratic in
the size of the circuit, [120] set a new paradigm for designing zkSNARKs.

The first universal zkSNARK with updatable and linear size SRS was Sonic proposed by
Maller et al. in [132]. Subsequently, Gabizon, Williamson, and Ciobotaru designed Plonk [91]
which currently is the most efficient updatable universal zkSNARK. Independently, Chiesa et
al. [62] proposed Marlin with comparable efficiency to Plonk.

The challenge of SE in the updatable setting. The notion of simulation-extractability for
zkSNARKs which is well motivated in practice, has not been studied in the updatable setting.
Consider the following scenario: We assume a “rushing” adversary that starts off with a sequence
of updates by malicious parties resulting in a subverted reference string srs. By combining their
trapdoor contributions and employing the simulation algorithm, these parties can easily compute
a proof to obtain a triple (srs, x, π) that convinces the verifier of a statement x without knowing
a witness. Now, assume that at a later stage, a party produces a triple (srs′, x, π′) for the same
statement with respect to an updated srs′ that has an honest update contribution. We want the
guarantee that this party must know a witness corresponding to x. The ability to “maul” the
proof π from the old SRS to a proof π′ for the new SRS without knowing a witness would
clearly violate security. The natural idea is to require that honestly updated reference strings
are indistinguishable from honestly generated reference strings even for parties that previously
contributed updates. However, this is not sufficient as the adversary can also rush toward the end
of the SRS generation ceremony to perform the last update.

A definition of SE in the updatable setting should take these additional powers of the
adversary, which are not captured by existing definitions of SE, into consideration. While generic
compilers [3, 127] can be applied to updatable SRS SNARKs to obtain SE, not only do they
inevitably incur overheads and lead to efficiency loss, we contend that the standard definition of
SE does not suffice in the updatable setting.

4.1.1 Our Contributions
We investigate the non-malleability properties of zkSNARK protocols obtained by FS-compiling
multi-message protocols in the updatable SRS setting and give a modular approach to analyze
their simulation-extractability. We make the following contributions:

• Updatable simulation extractability (USE). We propose a definition of simulation ex-
tractability in the updatable SRS setting called USE, that captures the additional power the
adversary gets by being able to update the SRS.

• Theorem for USE of FS-compiled proof systems. We define three notions in the updatable
SRS and ROM, trapdoor-less zero-knowledge, a unique response property, and rewinding-
based knowledge soundness. Our main theorem shows that multi-message FS-compiled
proof systems that satisfy these notions are USE out-of-the box.

• USE for concrete zkSNARKs. We prove that the most efficient updatable SRS SNARKS
– Plonk/Sonic/Marlin – satisfy the premises of our theorem. We thus show that these
zkSNARKs are updatable simulation extractable.

• SNARKY signatures in the updatable setting. Our results validate the folklore that the
Fiat–Shamir transform is a natural means for constructing signatures of knowledge. This
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gives rise to the first SoK in the updatable setting and confirms that a much larger class of
zkSNARKs, besides [117], can be lifted to SoK.

• Broad applicability. The updatable SRS plus ROM includes both the trusted SRS and
the ROM as special cases. This implies the relevance of our theorem for transparent
zkSNARKs such as Halo2 and Plonky2 that replace the polynomial commitments of Kate
et al. [123] with commitments from Bulletproof [41] and STARKs [28], respectively.

4.1.2 Technical Overview
At a high level, the proof of our main theorem for updatable simulation extractability is along the
lines of the simulation extractability proof for FS-compiled sigma protocols from [81]. However,
our theorem introduces new notions that are more general to allow us to consider proof systems
that are richer than sigma protocols and support an updatable setup. We discuss some of the
technical challenges below.

Plonk, Sonic, and Marlin were originally presented as interactive proofs of knowledge that are
made non-interactive via the Fiat–Shamir transform. In the following, we denote the underlying
interactive protocols by P (for Plonk), S (for Sonic), and M (for Marlin) and the resulting
non-interactive proof systems by PFS, SFS, MFS respectively.
Rewinding-Based Knowledge Soundness (RBKS). Following [81], one would have to show
that for the protocols we consider, a witness can be extracted from sufficiently many valid
transcripts with a common prefix. The standard definition of special soundness for sigma
protocols requires the extraction of a witness from any two transcripts with the same first message.
However, most zkSNARK protocols do not satisfy this notion. We put forth a notion analogous
to special soundness that is more general and applicable to a wider class of protocols. Namely,
protocols compiled using multi-round FS that rely on an (updatable) SRS. P, S, and M have
more than three messages, and the number of transcripts required for extraction is more than
two. Concretely, (3n+ 6) for Plonk, (n+ 1) for Sonic, and (2n+ 3) for Marlin, where n is the
number of constraints in the proven circuit. Hence, we do not have a pair of transcripts but a tree
of transcripts.

Furthermore, the protocols we consider are arguments and rely on a SRS that comes with a
trapdoor. An adversary in possession of the trapdoor can produce multiple valid proof transcripts
potentially for false statements without knowing any witness. This is true even in the updatable
setting, where a trapdoor still exists for any updated SRS. Recall that the standard special
soundness definition requires witness extraction from any suitably structured tree of accepting
transcripts. This means that there are no such trees for false statements.

Instead, we give a rewinding-based knowledge soundness definition with an extractor that
proceeds in two steps. It first uses a tree building algorithm T to obtain a tree of transcripts.
In the second step, it uses a tree extraction algorithm Extss to compute a witness from this tree.
Tree-based knowledge soundness guarantees that it is possible to extract a witness from all
(but negligibly many) trees of accepting transcripts produced by probabilistic polynomial time
(PPT) adversaries. That is, if extraction from such a tree fails, then we break an underlying
computational assumption. Moreover, this should hold even against adversaries that contribute
to the SRS generation.
Unique Response Protocols (UR). Another property required to show simulation extractability
is the unique response property which says that for 3-message sigma protocols, the response of
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the prover (3-rd message) is determined by the first message and the challenge [86] (intuitively,
the prover can only employ fresh randomness in the first message of the protocol). We cannot
use this definition since the protocols we consider have multiple rounds of randomized prover
messages. In Plonk, both the first and the third messages are randomized. Although the Sonic
prover is deterministic after it picks its first message, the protocol has more than 3 messages.
The same holds for Marlin. We propose a generalization of the unique response property called
k-UR. It requires that the behavior of the prover be determined by the first k of its messages. For
our proof, it is sufficient that Plonk is 3-UR, and Sonic and Marlin are 2-UR.

Trapdoor-Less Zero-Knowledge (TLZK). The premises of our main theorem include two
computational properties that do not mention a simulator, RBKS and UR, The theorem states
that together with a suitable property for the simulator of the zero-knowledge property, they
imply USE. Our key technique is to simulate simulation queries when reducing to RBKS and
UR. For this it is convenient that the zero-knowledge simulator be trapdoor-less, that is can
produce proofs without relying on the knowledge of the trapdoor. Simulation is based purely
on the simulators early control over the challenge. In the ROM this corresponds to a simulator
that programs the random oracle and can be understood as a generalization of honest-verifier
zero-knowledge for multi-message Fiat–Shamir transformed proof systems with an SRS. We say
that such a proof system is k-TLZK, if the simulator only programs the k-th challenge and we
construct such simulators for PFS, SFS, and MFS.

Technically we will make use of the k-UR property together with the k-TLZK property
to bound the probability that the tree produced by the tree builder T of RBKS contains any
programmed random oracle queries.

4.1.3 Related Work

There are many results on simulation extractability for non-interactive zero-knowledge proofs
(NIZKs). First, Groth [114] noticed that a (black-box) SE NIZK is universally-composable
(UC) [51]. Then Dodis et al. [78] introduced a notion of (black-box) true simulation extractability
(i.e., SE with simulation of true statements only) and showed that no NIZK can be UC-secure if
it does not have this property.

In the context of zkSNARKs, the first SE zkSNARK was proposed by Groth and Maller [117]
and a SE zkSNARK for QAP was designed by Lipmaa [131]. Kosba et al. [127] gave a general
transformation from a NIZK to a black-box SE NIZK. Although their transformation works for
zkSNARKs as well, the succinctness of the proof system is not preserved by this transformation.
Abdolmaleki et al. [3] showed another transformation that obtains non-black-box simulation
extractability but also preserves the succinctness of the argument. The zkSNARK of [116] has
been shown to be SE by introducing minor modifications to the construction and making stronger
assumptions [11, 39]. Recently, [16] showed that the Groth’s original proof system from [116] is
weakly SE and randomizable. None of these results are for zkSNARKs in the updatable SRS
setting or for zkSNARKs obtained via the Fiat–Shamir transformation. The recent work of [94]
shows that Fiat–Shamir transformed Bulletproofs are simulation extractable. While they show a
general theorem for multi-round protocols, they do not consider a setting with an SRS, and are
therefore inapplicable to zkSNARKs in the updatable SRS setting.
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4.2 Definitions and Lemmas for Multi-message SRS-based
Protocols

Simulation-extractability for multi-message protocols. Most recent SNARK schemes follow the
same blueprint of constructing an interactive information-theoretic proof system that is then
compiled into a public coin computationally sound scheme using cryptographic tools such as
polynomial commitments, and finally made non-interactive via the Fiat–Shamir transformation.
Existing results on simulation extractability (for proof systems and signatures of knowledge) for
Fiat–Shamir transformed systems work for 3-message protocols without reference string that
require two transcripts for standard model extraction, e.g., [81, 146, 149].

In this section, we define properties that are necessary for our analysis of multi-message
protocols with a universal updatable SRS. In order to prove simulation-extractability for such
protocols, we require more than just two transcripts for extraction. Moreover, in the updatable
setting we consider protocols that rely on an SRS where the adversary gets to contribute to the
SRS. We first recall the updatable SRS setting and the Fiat-Shamir transform for (2µ+1)-message
protocols. Next, we define trapdoor-less zero-knowledge and simulation-extractability which we
base on [81] adapted to the updatable SRS setting. Then, to support multi-message SRS-based
protocols compiled using the Fiat–Shamir transform, we generalize the unique response property,
and define a notion of computational special soundness called rewinding-based knowledge
soundness.

Let P and V be PPT algorithms, the former called the prover and the latter the verifier of a
proof system. Both algorithms take a pre-agreed structured reference string srs as input. The
structured reference strings we consider are (potentially) updatable, a notion we recall shortly.
We focus on proof systems made non-interactive via the multi-message Fiat–Shamir transform
presented below where prover and verifier are provided with a random oracleH. We denote by π
a proof created by P on input (srs, x,w). We say that proof is accepting if V(srs, x, π) accepts it.

Let R(A) denote the set of random tapes of correct length for adversary A (assuming the
given value of security parameter λ), and let r ←$ R(A) denote the random choice of tape r
from R(A).

4.2.1 Updatable SRS Setup Ceremonies
The definition of updatable SRS ceremonies of [120] requires the following algorithms.

• (srs, ρ)← GenSRS(R) is a PPT algorithm that takes a relationR and outputs a reference
string srs, and correctness proof ρ.

• (srs′, ρ′)← Upd(srs, {ρj}nj=1) is a PPT algorithm that takes a srs, a list of update proofs
and outputs an updated srs′ together with a proof of correct update ρ′.

• b ← VerifySRS(srs, {ρj}nj=1) takes a reference string srs, a list of update proofs, and
outputs a bit indicating acceptance or not.3

In the next section, we define security notions in the updatable setting by giving the adversary
access to an SRS update oracle UpdO, defined in Fig. 4.1. The oracle allows the adversary

3For instance Plonk and Marlin will use the GenSRS, Upd and VerifySRS algorithms in Fig. 4.4.
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UpdO(intent, srsn, {ρj}nj=1)
if srs ̸= ⊥ : return ⊥
if (intent = Setup) :

(srs′, ρ′)← GenSRS(R)
Qsrs ← Qsrs ∪ {(srs′, ρ′)}
return (srs′, ρ′)

if (intent = update) :

b← VerifySRS(srsn, {ρj}nj=1)

if (b = 0) : return ⊥
(srs′, ρ′)← Upd(srsn, {ρj}nj=1)

Qsrs ← Qsrs ∪ {(srs′, ρ′)}
return (srs′, ρ′)

if (intent = final) :

b← VerifySRS(srsn, {ρj}nj=1)

if (b = 0) ∨Q
(2)
srs ∩ {ρj}i = ∅ :

return ⊥
srs← srsn, return srs

else return ⊥

Figure 4.1: The oracle defines the notion of updatable SRS setup.

to control the SRS generation. A trusted setup can be expressed by the updatable setup
definition simply by restricting the adversary to only call the oracle on intent = Setup and
intent = final. Note that a soundness adversary now has access to both the random oracleH
and UpdO: (x, π)← AUpdO,H(1λ; r).

Remark on universality of the SRS. The proof systems we consider in this work are universal.
This means that both the relation R and the reference string srs allows to prove arithmetic
constraints defined over a particular field up to some size bound. The public instance x must
determine the constraints. IfR comes with any auxiliary input, the latter is benign. We elide
public preprocessing of constraint specific proving and verification keys. While important for
performance, this modeling is not critical for security.

4.2.2 Multi-message Fiat-Shamir Compiled Provers and Verifiers
Given interactive prover and (public coin) verifier P′,V′ that exchange messages resulting in
transcript π̃ = (a1, c1, . . . , aµ, cµ, aµ+1), where ai comes from P′ and ci comes from V′, the
(2µ + 1)-message Fiat-Shamir heuristic defines non-interactive provers and verifiers P,V as
follows:

• P behaves as P′ except after sending message ai, i ∈ [1 .. µ], the prover does not wait
for the message from the verifier but computes it locally setting ci = H(π̃[0..i]), where
π̃[0..j] = (x, a1, c1, . . . , aj−1, cj−1, aj).4

4For Fiat–Shamir based SoK the message signed m is added to x before hashing.
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SimO.H(x)
if H[x] = ⊥ then

H[x]←$ Im(H)
return H[x]

SimO.Prog(x, h)
if H[x] = ⊥ then

H[x]← h

Qprog ← Qprog ∪ {x}
return H[x]

SimO.P(x,w) SimO.P′(x)

assert (x,w) ∈ R

π ← SimSimO.H,SimO.Prog(srs, x)

Q← Q ∪ {(x, π)}
return π

Figure 4.2: Simulation oracles: srs is the finalized SRS, only SimO.P′ allows for simulation of
false statements

P outputs the non-interactive proof π = (a1, . . . , aµ, aµ+1), that omits challenges as they
can be recomputed usingH.

• V takes x and π as input and behaves as V′ would but does not provide challenges to the
prover. Instead it computes the challenges locally asPwould, starting from π̃[0..1] = (x, a1)
which can be obtained from x and π. Then it verifies the resulting transcript π̃ as the
verifier V′ would.

We note that since the verifier can compute the challenges by querying the random oracle, they
do not need to be sent by the prover. Thus the π - π̃ notational distinction.

Notation for (2µ + 1)-message Fiat–Shamir transformed proof systems. Let SRS =
(GenSRS,Upd,VerifySRS) be the algorithm of an updatable SRS ceremony. All our definitions
and theorems are about non-interactive proof systems Ψ = (SRS,P,V, Sim) compiled via the
(2µ+1)-message FS transform. That isπ = (a1, . . . , aµ, aµ+1) and π̃ = (a1, c1, . . . , aµ, cµ, aµ+1),
with ci = H(π̃[0..i]). We use π̃[0] for instance x and π̃[i], π̃[i].ch to denote prover message ai
and challenge ci respectively.

4.2.3 Trapdoor-Less Zero-Knowledge (TLZK)
We call a protocol trapdoor-less zero-knowledge (TLZK) if there exists a simulator that does not
require the trapdoor, and works by programming the random oracle. Moreover, the simulator
may only be allowed to program the random oracle on point π̃[0, k], that is the simulator can
only program the challenges that come after the k-th prover message. We call protocols which
allow for such a simulation k-programmable trapdoor-less zero-knowledge.

Our definition of zero-knowledge for non-interactive arguments is in programmable ROM.
We model this using the oracles from Fig. 4.2 that provide a stateful wrapper around Sim.
SimO.H(x) simulates H using lazy sampling, SimO.Prog(x, h) allows for programming the
simulatedH and is available only to Sim. SimO.P(x,w) and SimO.P′(x) call the simulator. The
former is used in the zero-knowledge definition and requires the statement and witness to be
in the relation, the latter is used in the simulation extraction definition and does not require a
witness input.

Definition 4.2.1 (Updatable k-Programmable Trapdoor-Less Zero-Knowledge). Let ΨFS =
(SRS,P,V, Sim) be a (2µ+ 1)-message FS-transformed NIZK proof system with an updatable
SRS setup. We call ΨFS trapdoor-less zero-knowledge with security εzk if for any adversary A,
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|ε0(λ)− ε1(λ)| ≤ εzk(λ), where

ε0(λ) = Pr
[
AUpdO,H,P(1λ)

]
, ε1(λ) = Pr

[
AUpdO,SimO.H,SimO.P(1λ)

]
.

If εzk(λ) is negligible, we say ΨFS is trapdoor-less zero-knowledge. Additionally, we say that
ΨFS is k-programmable, if Sim before returning a proof π only calls SimO.Prog on (π̃[0..k], h).
That is, it only programs the k-th message.

Remark 4.2.2 (TLZK vs HVZK). We note that TLZK notion is closely related to honest-verifier
zero-knowledge in the standard model. That is, if we consider an interactive proof system Ψ
that is HVZK in the standard model then ΨFS is TLZK. This comes as the simulator Sim in
Ψ produces a valid simulated proof by picking verifier’s challenges according to a predefined
distribution and ΨFS’s simulator SimFS produces its proofs similarly by picking the challenges
and additionally programming the random oracle to return the picked challenges. Importantly, in
both Ψ and ΨFS success of the simulator does not depend on access to an SRS trapdoor.

We note that Plonk is 3-programmable TLZK, and Sonic and Marlin are 2-programmable
TLZK. This follows directly from the proofs of their standard model zero-knowledge property in
Lemmas 4.6.3,4.7.6,4.8.3.

4.2.4 Updatable Simulation Extractability (USE)
We note that the zero-knowledge property is only guaranteed for statements in the language. For
simulation extractability where the simulator should be able to provide simulated proofs for false
statements as well, we thus use the oracle SimO.P′

5.

Definition 4.2.3 (Updatable Simulation Extractability). Let ΨNI = (SRS,P,V, Sim) be a NIZK
proof system with an updatable SRS setup. We say that ΨNI is updatable simulation-extractable
with security loss εse(λ, acc, q) if for any PPT adversary A that is given oracle access to update
oracle UpdO and simulation oracle SimO and that produces an accepting proof for ΨNI with
probability acc, where

acc = Pr

[
V(srs, x, π) = 1
∧(x, π) ̸∈ Q

∣∣∣∣ r ←$ R(A)
(x, π)← AUpdO,SimO.H,SimO.P′

(1λ; r)

]
there exists an expected PPT extractor Extse such that

Pr

V(srs, x, π) = 1,
(x, π) ̸∈ Q,
R(x,w) = 0

∣∣∣∣∣∣ r ←$ R(A), (x, π)← AUpdO,SimO.H,SimO.P′
(1λ; r)

w← Extse(srs,A, r, Qsrs, QH, Q)

 ≤ εse(λ, acc, q)

Here, srs is the finalized SRS. List Qsrs contains all (srs, ρ) of update SRSs and their proofs, list
QH contains allA’s queries to SimO.H and the (simulated) random oracle’s answers, |QH| ≤ q,
and list Q contains all (x, π) pairs where x is an instance queried to SimO.P′ by the adversary
and π is the simulator’s answer .

5Note, that simulation extractability property where the simulator is required to give simulated proofs for true
statements only is called true simulation extractability.
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4.2.5 Unique Response (UR) Protocols
A technical hurdle identified by Faust et al. [81] for proving simulation extraction via the
Fiat–Shamir transformation is that the transformed proof system satisfies a unique response
property. The original formulation by Fischlin, although suitable for applications presented in
[81, 86], does not suffice in our case. First, the property assumes that the protocol has three
messages, with the second being the challenge from the verifier. That is not the case we consider
here. Second, it is not entirely clear how to generalize the property. Should one require that
after the first challenge from the verifier, the prover’s responses are fixed? That does not work
since the prover needs to answer differently on different verifier’s challenges, as otherwise the
protocol could have fewer messages. Another problem is that the protocol could have a message,
beyond the first prover’s message, which is randomized. Unique response cannot hold in this
case. Finally, the protocols we consider here are not in the standard model, but use an SRS.

We work around these obstacles by providing a generalized notion of the unique response
property. More precisely, we say that a (2µ+ 1)-message protocol has unique responses from k,
and call it a k-UR-protocol, if it follows the definition below:

Definition 4.2.4 (Updatable k-Unique Response Protocol). Let ΨFS = (SRS,P,V, Sim) be a
(2µ+ 1)-message FS-transformed NIZK proof system with an updatable SRS setup. LetH be
the random oracle. We say that ΨFS has unique responses for k with security εur(λ) if for any
PPT adversary Aur:

Pr

[
π ̸= π′, π̃[0..k] = π̃′[0..k],

V′(srs, x, π, c) = V′(srs, x, π′, c) = 1

∣∣∣∣∣ (x, π, π′, c)← AUpdO,H
ur (1λ)

]
≤ εur(λ)

where srs is the finalized SRS and V′(srs, x, π = (a1, . . . , aµ, aµ+1), c) behaves as V(srs, x, π)
except for using c as the k-th challenge instead of callingH(π̃[0..k]). Thus, A can program the
k-th challenge. We say ΨFS is k-UR, if εur(λ) is negligible.

Intuitively, a protocol is k-UR if it is infeasible for a PPT adversary to produce a pair of
accepting proofs π ̸= π′ that are the same on the first k messages of the prover.

The definition can be easily generalized to allow for programing the oracle on more than just
a single point. We opted for this simplified presentation, since all the protocols analyzed in this
paper require only single-point programming,

4.2.6 Rewinding-Based Knowledge Soundness (RBKS)
Before giving the definition of rewinding-based knowledge soundness for NIZK proof systems
compiled via the (2µ + 1)-message FS transformation, we first recall the notion of a tree of
transcripts.

Definition 4.2.5 (Tree of accepting transcripts, cf. [38]). A (n1, . . . , nµ)-tree of accepting
transcripts is a tree where each node on depth i, for i ∈ [1 .. µ+ 1], is an i-th prover’s message
in an accepting transcript; edges between the nodes are labeled with challenges, such that no
two edges on the same depth have the same label; and each node on depth i has ni − 1 siblings
and ni+1 children. The tree consists of N =

∏µ
i=1 ni branches, where N is the number of

accepting transcripts. We require N = poly(λ). We refer to a (1, . . . , nk = n, 1, . . . , 1)-tree as
a (k, n)-tree.
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The existence of simulation trapdoor for P, S and M means that they are not special sound in
the standard sense. We therefore put forth the notion of rewinding-based knowledge soundness
that is a computational notion. Note that in the definition below, it is implicit that each transcript
in the tree is accepting with respect to a “local programming” of the random oracle. However,
the verification of the proof output by the adversary is with respect to a non-programmed random
oracle.

Definition 4.2.6 (Updatable Rewinding-Based Knowledge Soundness). Let n1, . . . , nµ ∈ N. Let
ΨFS = (SRS,P,V, Sim) be a (2µ + 1)-message FS-transformed NIZK proof system with an
updatable SRS setup for relation R. Let H be the random oracle. We require existence of an
expected PPT tree builder T that eventually outputs a T which is either a (n1, . . . , nµ)-tree of
accepting transcript or ⊥ and a PPT extractor Extss. Let adversary Aks be a PPT algorithm,
that outputs a valid proof with probability at least acc, where

acc = Pr

[
V(srs, x, π) = 1
∧ (x, π) ̸∈ Q

∣∣∣∣ r ←$ R(Aks)

(x, π)← AUpdO,H
ks (1λ; r)

]
.

We say thatΨFS is (n1, . . . , nµ)-rewinding-based knowledge sound with security loss εks(λ, acc, q)
if

Pr

V(srs, x, π) = 1,
∧ R(x,w) = 0

∣∣∣∣∣∣∣
r ←$ R(Aks),

(x, ·)← AUpdO,H
ks (1λ; r)

T← T (srs,Aks, r, Qsrs, QH),w← Extss(T)

 ≤ εks(λ, acc, q).

Here, srs is the finalized SRS. List Qsrs contains all (srs, ρ) of updated SRSs and their proofs, and
list QH contains all of the adversaries queries toH and the random oracle’s answers, |QH| ≤ q.
We call the protocol (k, n)-rewinding-based knowledge sound if T is a (k, n)-tree of accepting
transcripts.

4.3 Simulation Extractability—The General Result
Equipped with the definitional framework of Section 4.2, we now present the main result of this
paper: a proof of simulation extractability for multi-message Fiat–Shamir-transformed NIZK
proof systems.

Without loss of generality, we assume that whenever the accepting proof contains a response
to a challenge from a random oracle, then the adversary queried the oracle to get it. It is
straightforward to transform any adversary that violates this condition into an adversary that
makes these additional queries to the random oracle and wins with the same probability.

The core conceptual insight of the proof is that the k-unique response and k-programmable
trapdoor-less zero-knowledge properties together ensure that the k-th move challenges in the
trees of rewinding-based knowledge soundness are fresh and do not come from the simulator.
This allows us to eliminate the simulation oracle in our rewinding argument and enables us to
use the existing results of [12] in later sections.

Theorem 4.3.1 (Simulation-extractable multi-message protocols). Let ΨFS = (SRS,P,V, Sim)
be a (2µ+ 1)-message FS-transformed NIZK proof system with an updatable SRS setup. If ΨFS

is an updatable k-unique response protocol with security loss εur, is updatable k-programmable
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SimO.H(x)
if H[x] = ⊥ then

H[x]← H(x)
return H[x]

SimO.Prog(x, h)
if H[x] = ⊥ then

H[x]← h

Qprog ← Qprog ∪ {x}
return H[x]

Figure 4.3: Simulating random oracle calls.

trapdoor-less zero-knowledge, and (1, . . . , 1, nk, . . . , nµ)-updatable rewinding-based knowledge
sound (for some nk, . . . , nµ) with security loss εks; Then ΨFS is updatable simulation-extractable
with security loss

εse(λ, acc, q) ≤ εks(λ, acc− εur(λ), q)

against any PPT adversaryA that makes up to q random oracle queries and returns an accepting
proof with probability at least acc.

Proof. Let (x, π) ← AUpdO,SimO.H,SimO.P′
(rA) be the USE adversary. We show how to build

an extractor Extse(srs,A, rA, Q,QH, Qsrs) that outputs a witness w, such that R(x,w) holds
with high probability. To that end we define an algorithm AUpdO,H

ks (r) against rewinding-based
knowledge soundness of ΨFS that runs internally AUpdO,SimO.H,SimO.P′

(rA). Here r = (rSim, rA)
with rSim the randomness that will be used to simulate SimO.P′.

The code of AUpdO,H
ks (r) hardcodes Q such that it does not use any randomness for proofs

in Q as long as statements are queried in order. In this case it simple returns a proof πSim

from Q but nevertheless queries SimO.Prog on (π̃Sim[0..k], π̃Sim[k].ch), i.e. it programs the k-th
challenge. While it is hard to construct such an adversary without knowing Q, it clearly exists
and Extse has the necessary inputs to construct Aks. This hardcoding guarantees that Aks returns
the same (x, π) as A in the experiment. Eventually, Extse uses the tree builder T and extractor
Extss for Aks to extract the witness for x. Both guaranteed to exist (and be successful with high
probability) by rewinding-based knowledge soundness. This high-level argument shows that
Extse exists as well.

We now give the details of the simulation that guarantees that Aks is successful whenever A
is—except with a small security loss that we will bound late: Since Aks runs A internally, it
needs to take care of A’s oracle queries. Aks passes on queries of A to the update oracle UpdO
to its own UpdO oracle and returns the result to A. Aks internally simulates (non-hardcoded)
queries to the simulator SimO.P′ by running the Sim algorithm on randomness rSim of its tape.
Sim requires access to oracles SimO.H to compute a challenge honestly and SimO.Prog to
program a challenge. Again Aks simulates both of these oracles internally, cf. Fig. 4.3, this time
using theH oracle of Aks. Note that queries of A to SimO.H are not programmed, but passed
on toH.

Importantly, all challenges in simulated proofs, up to round k are also computed honestly, i.e.
π̃[i].ch = H(π̃[0..i]), for i < k.

Eventually, A outputs an instance and proof (x, π). Aks returns the same values as long
as π̃[0..i] /∈ Qprog, i ∈ [1, µ]. This models that the proof output by Aks must not contain any
programmed queries as such a proof would not be w.r.tH in the RBKS experiment. IfA outputs
a proof that does contain programmed challenges, then Aks aborts. We denote this event by E.

Lemma 4.3.2. Probability that E happens is upper-bounded by εur(λ).
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Proof. We build an adversary AUpdO,H
ur (λ; r) that has access to the random oracleH and update

oracle UpdO. Aur uses Aks to break the k-UR property of ΨFS.
WhenAks outputs a proof π for x such that E holds,Aur looks through lists Q and QH until it

finds π̃Sim[0..k] such that π̃[0..k] = π̃Sim[0..k] and a programmed random oracle query π̃Sim[k].ch
on π̃Sim[0..k]. Aur returns two proofs π and πSim for x:

π1 = πSim = (πSim[1..k], πSim[k + 1..µ+ 1])

π2 = π = (πSim[1..k], π[k + 1..µ+ 1])

and the challenge π̃Sim[k].ch = π̃[k].ch.
Importantly, both proofs are w.r.t the unique response verifier. The first, since it is a

correctly computed simulated proof for which the unique response property definition allows
any challenges at k. The latter, since it is an accepting proof produced by the adversary. We
have that π ̸= πSim as otherwise A does not win the simulation extractability game as π ∈ Q.
On the other hand, if the proofs are different, then Aur breaks k-UR-ness of ΨFS. This happens
only with probability εur(λ).

We denote by ãcc the probability that Aks outputs an accepting proof. We note that by
up-to-bad reasoning ãcc is at most εur(λ) far from the probability that A outputs a proof. Thus,
the probability thatAks outputs a proof is at least ãcc ≥ acc− εur(λ). Since ΨFS is εks(λ, ãcc, q)
rewinding-based knowledge sound, there is a tree builder T and extractor Extss that rewinds Aks

to obtain a tree of accepting transcripts T and fails to extract the witness with probability at most
εks(λ, ãcc, q). The extractor Extse outputs the witness with the same probability.

Thus εse(λ, acc, q) = εks(λ, ãcc, q) ≤ εks(λ, acc− εur, q).

Remark 4.3.3. Observe that our theorem does not depend on εzk(λ). There is no real prover
algorithm P in the experiment. Only the k-programmability of TLZK matters.

Remark 4.3.4. Observe that the theorem does not prescribe a tree shape for the tree builder T .
Interestingly, in our concrete results T outputs a (k, ∗)-tree of accepting transcripts.

4.4 Polynomial Commitment Schemes
A polynomial commitment schemePC = (GenSRS,Com,Op,Verify) consists of four algorithms
and allows to commit to a polynomial f and later open the evaluation in a point z to some value
s = f(z). More formally:

GenSRS(1λ,max): The key generation algorithm takes in a security parameter λ and a parameter
max which determines the maximal degree of the committed polynomial. It outputs a
structured reference string srs (the commitment key). Note that srs implicitly determines
λ and max.

Com(srs, f): The commitment algorithm Com(srs, f) takes in srs and a polynomial f with
maximum degree max, and outputs a commitment c.

Op(srs, z, s, f): The opening algorithm takes as input srs, an evaluation point z, a value s and
the polynomial f. It outputs an opening o.
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Verify(srs, c, z, s, o): The verification algorithm takes in srs, a commitment c, an evaluation
point z, a value s and an opening o. It outputs 1 if o is a valid opening for (c, z, s) and 0
otherwise.

A secure polynomial commitment PC should satisfy correctness, evaluation binding, opening
uniqueness, hiding and knowledge-binding. Note that since we are in the updatable setting, srs in
these security definitions is the SRS thatA finalizes using the update oracle UpdO (See Fig. 4.1).

Evaluation binding: A PPT adversaryA which outputs a commitment c and evaluation points
z has at most negligible chances to open the commitment to two different evaluations
s, s′. That is, let k ∈ N be the number of committed polynomials, l ∈ N number of
evaluation points, c ∈ Gk be the commitments, z ∈ Fl

p be the arguments the polynomials
are evaluated at, s, s′ ∈ Fk

p the evaluations, and o,o′ ∈ Fl
p be the commitment openings.

Then for every PPT adversary A

Pr

 Verify(srs, c, z, s,o) = 1,
Verify(srs, c, z, s′,o′) = 1,

s ̸= s′

∣∣∣∣∣∣ (c, z, s, s′,o,o′)← AUpdO(max)

 ≤ negl(λ) .

Hiding: We also formalize notion of k-hiding property of a polynomial commitment scheme.
Let H be a set of size max+ 1 and ZH its vanishing polynomial. We say that a polynomial
scheme is hiding with security εhid(λ) if for every PPT adversary A, k ∈ N, probability

Pr
[
b′ = b

∣∣ (f0, f1, c, k, b′)← AUpdO,OC(max, c), f0, f1 ∈ Fmax[X]
]
≤ 1

2
+ ε(λ).

Where c = f ′
b(χ), for a random bit b and the polynomial f ′

b(X) = fb+ZH(X)(a0+a1X+
. . . ak−1X

k−1), and the oracle OC on adversary’s evaluation query x it adds x to initially
empty set Qx and if |Qx| ≤ k, it provides f ′

b(x).

Commitment of knowledge: Intuitively, when a commitment scheme is “of knowledge” then if
an adversary produces a (valid) commitment c, which it can open correctly in an evaluation
point, then it must know the underlying polynomial f which commits to that value. For
every PPT adversary A who produces commitment c, evaluation s and opening o there
exists a PPT extractor Ext such that

Pr

deg f ≤ max, c = Com(srs, f),
Verify(srs, c, z, s, o) = 1

∣∣∣∣∣∣
c← AUpdO(max), z ←$ Fp

(s, o)← A(c, z),
f = ExtA(srs, c)

 ≥ 1− εk(λ).

In that case we say that PC is εk(λ)-knowledge.

4.4.1 Unique Opening Property of PCP

Now, we show that the batched variant of the KZG polynomial commitment scheme that is used
in Plonk and Marlin, has the unique opening property.
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GenSRS(1λ,max)
χ←$ Fp

srs :=
([
{χi}max

i=0

]
1
, [χ]2

)
;

ρ = ([χ, χ]1 , [χ]2)

return (srs, ρ)

Upd(srs, {ρj}nj=1)
Parse srs as ([{Ai}max

i=0 ]1 , [B]2)

χ′ ←$ Fp

srs′ :=
([
{χ′iAi}max

i=0

]
1
,
[
χ′B

]
2

)
;

ρ′ =
([
χ′A1, χ

′]
1
,
[
χ′]

2

)
return (srs′, ρ′)

VerifySRS(srs, {ρj}nj=1)
Parse srs as ([{Ai}max

i=0 ]1 , [B]2)

and {ρj}nj=1 as
{(

Pj , sPj , P̂j

)}n

j=1

Verify Update proofs:
sP1 = P1

Pj • [1]2 = Pj−1 • P̂j ∀j ≥ 2
sPn • [1]2 = [1]1 • P̂n

Verify SRS structure:
[Ai]1 • [1]2 = [Ai−1]1 • [B]2 for all 0 < i ≤ max

Figure 4.4: Updatable SRS scheme SRS for PCP

Lemma 4.4.1. Let PCP = (GenSRS,Com,Op,VerifyBatched) be a batched version of a KZG
polynomial commitment, cf. Fig. 4.5, that commits to m polynomials of degree up to max. Let
z = (z0, . . . , zl−1) ∈ Fl

p be the points the polynomials are evaluated at, ki ∈ N be the number of
the committed polynomials to be evaluated at zi, and Ki be the set of indices of these polynomials.
Let sKi

∈ Fki
p be the evaluations of polynomials at zi, and o = (o0, . . . , ol−1) ∈ Fl

p be the
commitment openings. We show that the probability an algebraic adversary A, who can made
up to q random oracle queries, opens the same vector of commitments in two different ways is at
most εop(λ), for εop(λ) ≤ l · εudlog(λ) + q/p, where εudlog(λ) is security of the (max, 1)-udlog
assumption and p is the field size used in PCP.

Proof. The proof goes by game hops. In the first game the adversary wins if it presents two
accepting openings of a vector of polynomials. Then, we restrict the winning condition and
require that the adversary also makes the idealized batched verifier to accept the proof. In the
next game, we abort if the idealized verifier rejects a proof for one of the evaluation point.

Game 0: In this game the adversary wins if it provides two different openings for a vector of
polynomial commitments and their evaluations that are accepting by VerifyBatched.

Game 1: This game is identical to Game 0 except it is additionally aborted if the commitment
opening are not accepting by VerifyBatched′.

Game 0 to Game 1: Any discrepancy between the idealized verifier rejection and real verifier
acceptance allows one to break the (updatable) discrete logarithm problem. The reductionRudlog

proceeds as follows. It answers A’s queries for SRS updates according to the answers it receives
from its udlog update oracle. When A finalizes an SRS, Rudlog finalizes the corresponding
udlog challenge ([1, . . . , χ′max]1 , [1]2). We consider verification equation (∗∗) as a polynomial
in X and the verification equation (∗) as it’s evaluation at χ′. Consider an opening such that
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SRS(1λ,max)

cf. Fig. 4.4
Com(srs, f(X))

return [c]1 = [f(χ)]1
return f(X)

Op(srs, z, s, f(X), aux0)

γ ← H(g0(z, s, [c]1 , aux0))
for i ∈ [1 .. |z|] do

oj(X)←
∑
i∈Kj

γi−1
j

fi(X)− fi(zj)

X − zj

return o = [o(χ)]1
return o(X)

VerifyBatched(srs, [c]1 , z, s, [o(χ)]1 , (aux0, aux1))

γ ← H(g0(z, s, [c]1 , aux0))
r ← H(g1([c]1 , z, s, [o(χ)]1 , aux1))

(∗)if
|z|∑
j=1

rj ·

∑
i∈Kj

γi−1
j ci −

∑
i∈Kj

γi−1
j sij


1

• [1]2+

|z|∑
j=1

rjzjoj • [1]2 ̸=

 |z|∑
j=1

rjoj


1

• [χ]2 then

return 0

(**) if
∑|z|

j=1 r
j · (

∑
i∈Kj

γi−1
j fi(X) −∑

i∈Kj
γi−1
j sij )+∑|z|

j=1 r
jzjoj(X) ̸=

∑|z|
j=1 r

joj(X) ·
X then

return 0

return 1.

Verify(srs, [c]1 , z, s, [o(χ)]1 , aux0)

γ ← H(g0(z, s, [c]1 , aux0))
for j ∈ [1 .. |z|] do

if

∑
i∈Kj

γi−1
j ci −

∑
i∈Kj

γi−i
j si,j


1

• [1]2+

zjoj • [1]2 ̸= [oj ]1 • [χ]2 then

return 0

if
∑

i∈Kj
γi−1
j fi(X) −∑

i∈Kj
γi−i
j si,j+

zjoj(X) ̸=
oj(X)X then return 0

return 1.

Figure 4.5: PCP polynomial commitment scheme. Here |z| = l is the number of evaluation
points, the number of committed polynomials is m, Kj is the set of polynomials that was
evaluated at point zj . Functions g0 and g1 are injective and specific to the context in which the
polynomial commitment is used. (In our case, functions g0 and g1 are produce partial transcripts
of the proof that utilizes the commitment scheme, aux contains all additional information that is
needed by the functions.) In the boxes we describe values returned or equality computed in the
ideal protocol where the verifier checks equalities on the polynomials instead of their evaluations.
For algorithm Alg we denote its ideal variant by Alg′.
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verification equation (**), cf. Fig. 4.5, does not hold, i.e. (**) is not a zero polynomial, but
(*) does, i.e. (**) zeroes at χ′. Since A is algebraic, all proof elements are extended by their
representation as a combination of the input G1-elements. Therefore, all coefficients of the
verification equation polynomial related to (**) are known. Now,Rudlog computes the roots of
(**), finds χ′ among them, and returns χ′. Hence the probability that the adversary wins in
Game 1, but does not win in Game 0 is upper-bounded by εudlog(λ).

Game 2: This game is identical to Game 1 except it is additionally aborted if one of the opening
is not accepting by an idealized verifier Verify′.

Game 1 to Game 2: The ideal verifier checks whether the following equality, for {γj}lj=1, r
picked at random, holds:

l−1∑
j=0

rj

∑
i∈Kj

γi−1
j · fi(X)−

∑
i∈Kj

γi−1
j · sij

 ≡
l−1∑
j=0

rjoj(X)(X − zj). (4.1)

Since r has been picked as a random oracle output, probability that Eq. (4.1) holds while for
some j ∈ [0 .. l − 1]

rj

∑
i∈Kj

γi−1 · fi(X)−
∑
i∈Kj

γi−1 · sij

 ̸≡ rjoj(X)(X − zj)

is q/p cf. [91]. When rj
(∑

i∈Kj
γi−1 · fi(X)−

∑
i∈Kj

γi−1 · sij
)
= rjoj(X)(X − zj) holds,

polynomial oj(X) is uniquely determined from the uniqueness of polynomial composition.

Conclusion: We note that the idealized verifier ve(X) does not accept two different openings
of a correct evaluation. Hence the probability that the adversary wins Game 2 is 0 and the
probability that the adversary wins in Game 0 is upper-bounded by εudlog(λ) +

q
p
.

4.5 Concrete SNARKs Preliminaries
We refer the reader to Section 2.6 for general notation and the definition of bilinear groups. For
pairing operation, we use additive notation in this work.

4.5.1 Algebraic Group Model
The algebraic group model (AGM) of Fuchsbauer, Kiltz, and Loss [89] lies somewhat between
the standard and generic bilinear group model. In the AGM it is assumed that an adversary
A can output a group element [y] ∈ G if [y] has been computed by applying group operations
to group elements given to A as input. It is further assumed, that A knows how to “build” [y]
from those elements. More precisely, the AGM requires that whenever A([x]) outputs a group
element [y] then it also outputs c such that [y] = c⊤ · [x]. Plonk, Sonic and Marlin have been
shown secure using the AGM. An adversary that works in the AGM is called algebraic.
Ideal Verifier and Verification Equations. Let (SRS,P,V, Sim) be a proof system. Observe
that the SRS algorithms provide an SRS which can be interpreted as a set of group representation
of polynomials evaluated at trapdoor elements. That is, for a trapdoor χ the SRS contains
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[p1(χ), . . . , pk(χ)]1, for some polynomials p1(X), . . . , pk(X) ∈ Fp[X]. The verifier V accepts
a proof π for instance x if (a set of) verification equation vex,π (which can also be interpreted
as a polynomial in Fp[X] whose coefficients depend on messages sent by the prover) zeroes at
χ. Following [91] we call verifiers who check that vex,π(χ) = 0 real verifiers as opposed to
ideal verifiers who accept only when vex,π(X) = 0. That is, while a real verifier accepts when a
polynomial evaluates to zero, an ideal verifier accepts only when the polynomial is zero.

Although ideal verifiers are impractical, they are very useful in our proofs. More precisely,
we show that the idealized verifier accepts an incorrect proof (what “incorrect” means depends
on the situation) with at most negligible probability (and in many cases—never); when the real
verifier accepts, but not the idealized one, then a malicious prover can be used to break the
underlying security assumption (in our case—a variant of dlog.)

Analogously, idealized verifier can be defined for polynomial commitment schemes.

4.5.2 Dlog Assumptions in Standard and Updatable Setting
Definition 4.5.1 ((q1, q2)-dlog assumption). Let A be a PPT adversary that gets as input
[1, χ, . . . , χq1 ]1 , [1, χ, . . . , χ

q2 ]2, for some randomly picked χ ∈ Fp, the assumption requires that
A cannot compute χ. That is

Pr[χ = A([1, χ, . . . , χq1 ]1 , [1, χ, . . . , χ
q2 ]2) |χ←$ Fp ] ≤ negl(λ).

Since all our protocols and security notions are in the updatable setting, it is natural to
define the dlog assumptions also in the updatable setting. That is, instead of being given a dlog
challenge the adversaryA is given access to an update oracle as defined in Fig. 4.1. The honestly
generated SRS is set to be a dlog challenge and the update algorithm Upd re-randomizing the
challenge. We define this assumptions and show a reduction between the assumptions in the
updatable and standard setting.

Note that for clarity we here refer to the SRS by Ch. Further, to avoid cluttering notation, we
do not make the update proofs explicit. They are generated in the same manner as the proofs
in Fig. 4.4.

Definition 4.5.2 ((q1, q2)-udlog assumption). LetA be aPPT adversary that gets oracle access to
UpdO with internal algorithms (GenSRS,Upd,VerifySRS), where GenSRS and Upd are defined
as follows:

• GenSRS(λ) samples χ←$ Fp and defines Ch := ([1, χ, . . . , χq1 ]1 , [1, χ, . . . , χ
q2 ]2).

• Upd(Ch, {ρj}nj=1) parses Ch as ([{Ai}q1i=0]1 , [{Bi}q2i=0]2), samples χ̃ ←$ Fp, and defines
C̃h := ([{χ̃iAi}q1i=0]1 , [{χ̃iBi}q2i=0]2).

Then Pr
[
χ̄← AUpdO(λ)

]
≤ negl(λ), where ([{χ̄i}q1i=0]1 , [{χ̄i}q2i=0]2) is the final Ch.

Remark 4.5.3 (Single adversarial updates after an honest setup.). As an alternative to the
updatable setting defined in Fig. 4.1, one can consider a slightly different model of setup,
where the adversary is given an initial honestly-generated SRS and is then allowed to perform
a malicious update in one-shot fashion. Groth et al. show in [120] that the two definitions are
equivalent for polynomial commitment based SNARKs. We use this simpler definition in our
reductions.
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We show a reduction from (q1, q2)-dlog assumption to its variant in the updatable setting
(with single adversarial update).

Lemma 4.5.4. (q1, q2)-dlog⇒ (q1, q2)-udlog.

Proof. We show a reduction R that uses an adversary A that breaks (q1, q2)-udlog to break
(q1, q2)-dlog. Specifically,R proceeds as follows: given a dlog instance Ch as input, it sets Ch
to be the initial (honestly generated) challenge and runs A. After A performs its update and
finalizes the dlog challenge it returns the answer χ′. Let χA be the trapdoor contribution of
adversary A in its update. ReductionR can extract this value from the update proof of A. R
now returns χ = χ′χ−1

A as the discrete logarithm of the original challenge Ch.

Generalized Forking Lemma Although dubbed “general”, the forking lemma of [19] is not
general enough for our purpose as it is useful only for protocols where a witness can be extracted
from just two transcripts. To be able to extract a witness from, say, an execution of P we need at
least (3n+ 6) valid proofs (where n is the number of constrains), (n+ 1) for S, and 2n+ 3 for
M. Here we use a result by Attema et al. [12]6 which lower-bounds the probability of generating
a tree of accepting transcripts T. We restate their Proposition 2 in our notation:

Lemma 4.5.5 (Run Time and Success Probability). Let N = n1 · · · · · nµ and p = 2Ω(λ). Let
εerr(λ) = 1−

∏µ
i=1

(
1− ni−1

p

)
. Assume adversaryA that makes up to q random oracle queries

and outputs an accepting proof with probability at least acc. There exists a tree building
algorithm T for (n1, . . . , nµ)-trees that succeeds in building a tree of accepting transcripts in
expected running time N + q(N − 1) with probability at least

acc− (q + 1)εerr(λ)

1− εerr(λ)
.

Opening Uniqueness of Batched Polynomial Commitment Openings To show the unique
response property required by our main theorem we show that the polynomial commitment
schemes employed by concrete proof systems have unique openings, which, intuitively, assures
that there is only one valid opening for a given committed polynomial and evaluation point:

Definition 4.5.6 (Unique opening property). Let m ∈ N be the number of committed polynomials,
l ∈ N number of evaluation points, c ∈ Gm be the commitments, z ∈ Fl

p be the arguments the
polynomials are evaluated at, Kj set of indices of polynomials which are evaluated at zj , si
vector of evaluations of fi, and oj ,o

′
j ∈ FKj

p be the commitment openings. Then for every PPT
adversary A

Pr

Verify(srs, c, z, s,o) = 1,
Verify(srs, c, z, s,o′) = 1,

o ̸= o′

∣∣∣∣∣∣ (c, z, s,o,o′)← AUpdO(max)

 ≤ negl(λ) .

We show that the polynomial commitment schemes of Plonk, Sonic, and Marlin satisfy this
requirement in Section 4.4.1.

6An earlier versions had its own forking lemma generalization. Attema et al. has a better bound.
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Remark 4.5.7. Fig. 4.5, cf. Section 4.4.1, presents efficient variants of KZG [123] polynomial
commitment schemes used in Plonk, Sonic and Marlin that support batched verification. Al-
gorithms Com, Op, Verify take vectors as input and receive an additional arbitrary auxiliary
string. This adversarially chosen string only provides additional context for the computation of
challenges and allows reconstruction of proof transcripts π̃[0..i] for batch challenge computations.
We treat auxiliary input implicitly in the definition above.

4.6 Non-malleability of Plonk
In this section, we show that PFS is simulation-extractable. To this end, we first use the unique
opening property to show that PFS has the 3-UR property, cf. Lemma 4.6.1. Next, we show that
PFS is rewinding-based knowledge sound. That is, given a number of accepting transcripts whose
first 3 messages match, we can either extract a witness for the proven statement or use one of the
transcripts to break the udlog assumption. This result is shown in the AGM, cf. Lemma 4.6.2.
We then show that PFS is 3-programmable trapdoor-less ZK in the AGM, cf. Lemma 4.6.3.

Given rewinding-based knowledge soundness, 3-UR and trapdoor-less zero-knowledge of
PFS, we invoke Theorem 4.3.1 and conclude that PFS is simulation-extractable.

4.6.1 Plonk Protocol Description

The constraint system. Assume C is a fan-in two arithmetic circuit, whose fan-out is unlimited
and has n gates and m wires (n ≤ m ≤ 2n). The constraint system of Plonk is defined as follows:

• Let V = (a, b, c), where a, b, c ∈ [1 ..m]n. Entries ai, bi, ci represent indices of left,
right and output wires of the circuit’s i-th gate.

• Vectors Q = (qL, qR, qO, qM , qC) ∈ (Fn)5 are called selector vectors: (a) If the i-th gate
is a multiplication gate then qLi = qRi = 0, qM i = 1, and qOi = −1. (b) If the i-th
gate is an addition gate then qLi = qRi = 1, qM i = 0, and qOi = −1. (c) qC i = 0 for
multiplication and addition gates.7

We say that vector x ∈ Fm satisfies constraint system if for all i ∈ [1 .. n]

qLi · xai
+ qRi · xbi + qO · xci + qM i · (xai

xbi) + qC i = 0.

Public inputs (xj)nj=1 are enforced by adding the constrains

ai = j, qLi = 1, qM i = qRi = qOi = 0, qC i = −xj ,

for some i ∈ [1 .. n].
Algorithms rolled out Plonk argument system is universal. That is, it allows to verify
computation of any arithmetic circuit which has up to n gates using a single SRS. However,
to make computation efficient, for each circuit there is allowed a preprocessing phase which
extends the SRS with circuit-related polynomial evaluations.

For the sake of simplicity of the security reductions presented in this paper, we include in the
SRS only these elements that cannot be computed without knowing the secret trapdoor χ. The
rest of the preprocessed input can be computed using these SRS elements. We thus let them to
be computed by the prover, verifier, and simulator separately.

7The qC i selector vector is meant to encode (input independent) constants.
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Plonk SRS generating algorithm GenSRS(R): The SRS generating algorithm picks at random
χ←$ Fp, computes and outputs srs =

([
{χi}n+5

i=0

]
1
, [χ]2

)
.

Preprocessing: Let H = {ωi}ni=1 be a (multiplicative) n-element subgroup of a field F compound
of n-th roots of unity in F. Let Li(X) be the i-th element of an n-elements Lagrange basis.
During the preprocessing phase polynomials Sidj, Sσj, for j ∈ [1 .. 3], are computed:

Sid1(X) = X,
Sid2(X) = k1 ·X,
Sid3(X) = k2 ·X,

Sσ1(X) =
∑n

i=1 σ(i)Li(X),
Sσ2(X) =

∑n
i=1 σ(n+ i)Li(X),

Sσ3(X) =
∑n

i=1 σ(2n+ i)Li(X).

Coefficients k1, k2 are such that H, k1 ·H, k2 ·H are different cosets of F∗, thus they define 3 · n
different elements. Gabizon et al. [91] notes that it is enough to set k1 to a quadratic residue and
k2 to a quadratic non-residue.

Furthermore, we define polynomials qL, qR, qO, qM, qC such that

qL(X) =
∑n

i=1qLiLi(X),

qR(X) =
∑n

i=1 qRiLi(X),

qM(X) =
∑n

i=1 qM iLi(X),

qO(X) =
∑n

i=1 qOiLi(X),

qC(X) =
∑n

i=1 qC iLi(X).

Proving statements in PFS We show how prover’s algorithm P(srs, x = (w′
i)
n
i=1 ,w = (wi)

3·n
i=1)

operates for the Fiat–Shamir transformed version of Plonk. Note that for notational convenience
w also contains the public input wires w′

i = wi, i ∈ [1 .. ℓ].

Message 1 Sample b1, . . . , b9 ←$ Fp; compute a(X), b(X), c(X) as

a(X) = (b1X + b2)ZH(X) +
∑n

i=1 wiLi(X)

b(X) = (b3X + b4)ZH(X) +
∑n

i=1 wn+iLi(X)

c(X) = (b5X + b6)ZH(X) +
∑n

i=1 w2·n+iLi(X)

Output polynomial commitments [a(χ), b(χ), c(χ)]1.

Message 2 Compute challenges β, γ ∈ Fp by querying random oracle on partial proof, that is,
β = H(π̃[0..1], 0) , γ = H(π̃[0..1], 1) .
Compute permutation polynomial z(X)

z(X) = (b7X
2 + b8X + b9)ZH(X) + L1(X)+

+
n−1∑
i=1

(
Li+1(X)

i∏
j=1

(wj + βωj−1 + γ)(wn+j + βk1ω
j−1 + γ)(w2n+j + βk2ω

j−1 + γ)

(wj + σ(j)β + γ)(wn+j + σ(n+ j)β + γ)(w2n+j + σ(2n+ j)β + γ)

)
Output polynomial commitment [z(χ)]1

Message 3 Compute the challenge α = H(π̃[0..2]), compute the quotient polynomial

t(X) =

(a(X)b(X)qM(X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X))/ZH(X)+

+ ((a(X) + βX + γ)(b(X) + βk1X + γ)(c(X) + βk2X + γ)z(X))α/ZH(X)

− (a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z(Xω))α/ZH(X)

+ (z(X)− 1)L1(X)α2/ZH(X)
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Split t(X) into degree less then n polynomials tlo(X), tmid(X), thi(X), such that t(X) =
tlo(X) +Xntmid(X) +X2nthi(X) . Output [tlo(χ), tmid(χ), thi(χ)]1.

Message 4 Get the challenge ς ∈ Fp, ς = H(π̃[0..3]). Compute opening evaluations a(ς), b(ς),
c(ς), Sσ1(ς), Sσ2(ς), t(ς), z(ςω), Compute the linearization polynomial

r(X) =

a(ς)b(ς)qM(X) + a(ς)qL(X) + b(ς)qR(X) + c(ς)qO(X) + qC(X)

+ α · ((a(ς) + βς + γ)(b(ς) + βk1ς + γ)(c(ς) + βk2ς + γ) · z(X))

− α · ((a(ς) + βSσ1(ς) + γ)(b(ς) + βSσ2(ς) + γ)βz(ςω) · Sσ3(X))

+ α2 · L1(ς) · z(X)

Output a(ς), b(ς), c(ς), Sσ1(ς), Sσ2(ς), t(ς), z(ςω), r(ς).

Message 5 Compute the opening challenge v ∈ Fp, v = H(π̃[0..4]). Compute the openings for
the polynomial commitment scheme

Wς(X) =
1

X − ς

tlo(X) + ςntmid(X) + ς2nthi(X)− t(ς) + v(r(X)− r(ς)) + v2(a(X)− a(ς))

+ v3(b(X)− b(ς)) + v4(c(X)− c(ς)) + v5(Sσ1(X)− Sσ1(ς))

+ v6(Sσ2(X)− Sσ2(ς))


Wςω(X) = (z(X)− z(ςω))/(X − ςω)

Output [Wς(χ),Wςω(χ)]1.

Plonk verifier V(srs, x, π):
The Plonk verifier works as follows

1. Validate all obtained group elements.

2. Validate all obtained field elements.

3. Parse the instance as {wi}ni=1 ← x.

4. Compute challenges β, γ, α, ς, v, u from the transcript.

5. Compute zero polynomial evaluation ZH(ς) = ςn − 1.

6. Compute Lagrange polynomial evaluation L1(ς) =
ςn−1
n(ς−1)

.

7. Compute public input polynomial evaluation PI(ς) =
∑

i∈[1 .. n] wiLi(ς).

8. Compute quotient polynomials evaluations

t(ς) = 1/ZH(ς)·(
r(ς)+PI(ς)−(a(ς)+βSσ1(ς)+γ)(b(ς)+βSσ2(ς)+γ)(c(ς)+γ)z(ςω)α−L1(ς)α

2
)
.

9. Compute batched polynomial commitment [D]1 = v [r]1 + u [z]1 that is

[D]1 = v

a(ς)b(ς) · [qM]1 + a(ς) [qL]1 + b [qR]1 + c [qO]1+

+ ((a(ς) + βς + γ)(b(ς) + βk1ς + γ)(c+ βk2ς + γ)α + L1(ς)α
2)+

− (a(ς) + βSσ1(ς) + γ)(b(ς) + βSσ2(ς) + γ)αβz(ςω) [Sσ3(χ)]1)

+

+ u [z(χ)]1 .
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10. Computes full batched polynomial commitment [F ]1:

[F ]1 =
(
[tlo(χ)]1 + ςn [tmid(χ)]1 + ς2n [thi(χ)]1

)
+ u [z(χ)]1+

+ v

a(ς)b(ς) · [qM]1 + a(ς) [qL]1 + b(ς) [qR]1 + c(ς) [qO]1+

+ ((a(ς) + βς + γ)(b(ς) + βk1ς + γ)(c(ς) + βk2ς + γ)α + L1(ς)α
2)+

− (a(ς) + βSσ1(ς) + γ)(b(ς) + βSσ2(ς) + γ)αβz(ςω) [Sσ3(χ)]1)


+ v2 [a(χ)]1 + v3 [b(χ)]1 + v4 [c(χ)]1 + v5 [Sσ1(χ)]1 + v6 [Sσ2(χ)]1 .

11. Compute group-encoded batch evaluation [E]1

[E]1 =
1

ZH(ς)

[
r(ς) + PI(ς) + α2L1(ς)+

− α ((a(ς) + βSσ1(ς) + γ)(b(ς) + βSσ2(ς) + γ)(c(ς) + γ)z(ςω))

]
1

+
[
vr(ς) + v2a(ς) + v3b(ς) + v4c(ς) + v5Sσ1(ς) + v6Sσ2(ς) + uz(ςω)

]
1
.

12. Check whether the verification equation holds

([Wς(χ)]1 + u · [Wςω(χ)]1) • [χ]2−
(ς · [Wς(χ)]1 + uςω · [Wςω(χ)]1 + [F ]1 − [E]1) • [1]2 = 0 . (4.2)

The verification equation is a batched version of the verification equation from [123] which
allows the verifier to check openings of multiple polynomials in two points (instead of
checking an opening of a single polynomial at one point).

Plonk simulator Simχ(srs, td = χ, x): We describe the simulator in Lemma 4.6.3.

4.6.2 Simulation extractability of Plonk

Unique Response Property

Lemma 4.6.1. Let PCP be a polynomial commitment that is εbind(λ)-binding and has unique
opening property with loss εop(λ). Then PFS is 3-UR against algebraic adversaries, who makes
up to q random oracle queries, with security loss εbind(λ) + εop(λ).

Intuition. We show that an adversary who can break the 3-unique response property of PFS

can be either used to break the commitment scheme’s evaluation binding or unique opening
property. The former happens with the probability upper-bounded by εbind(λ), the latter with the
probability upper bounded by εop(λ).

Proof. Let A be an algebraic adversary tasked to break the 3-UR-ness of PFS. We show that
the first three prover’s messages determine, along with the verifiers challenges, the rest of it.
We denote by π0 and π1 the two proofs that the adversary outputs. To distinguish polynomials
and commitments which an honest prover would send in the proof from the polynomials and
commitments computed by the adversary we write the latter using indices 0 and 1 (two indices
as we have two transcripts), e.g. to describe the quotient polynomial provided by the adversary
we write t0 and t1 instead of t as in the description of the protocol.
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We note that since the unique response property requires from π0 and π1 that the first place
they possibly differ is the 4-th prover’s message, then the challenge ς , that is picked by the
adversary after the 3-rd message is the same in both transcripts. This challenge determines the
evaluation point of polynomials a(X), b(X), c(X), t(X), z(X) which commitments are already
sent.

In its fourth message, the prover provides evaluations of the aforementioned polynomials,
along with evaluations of publicly known polynomials Sσ1(ς), Sσ2(ς), and evaluation of a
linearization polynomial r(ς).

Note that the adversary can output two accepting proofs that differ on their fourth message
only if it either manages to break evaluation binding of one of the opening, or provides an
incorrect opening which is accepted due to a batching error. Since the commitment scheme is
evaluation binding with security loss εbind(λ), the adversary can make π0 and π1 differ on the
fourth message with the same probability.

Next, assume that the transcripts are the same up to the fourth message, but differ at the fifth.
In that message, the adversary provides openings of the evaluations. Since the unique opening
property, the adversary can open the valid evaluation of a polynomial to two different values
with probability at most εop(λ). (We note that for the KZG polynomial commitment scheme, as
used in [91], εop(λ) ≤ εudlog(λ) + q/p, cf. Lemma 4.4.1.)

By the union bound, the adversary is able to break the unique response property with
probability upper bounded by εbind(λ) + εop(λ).

Rewinding-Based Knowledge Soundness

Lemma 4.6.2. PFS is (3, 3n+6)-rewinding-based knowledge sound against algebraic adversaries
who make up to q random oracle queries with security loss

εks(λ, acc, q) ≤

1−
acc− (q + 1)

(
3n+5
p

)
1− 3n+5

p

+ (3n+ 6) · εudlog(λ) ,

Here acc is a probability that the adversary outputs an accepting proof, and εudlog(λ) is security
of (n+ 5, 1)-udlog assumption.

Intuition. We use Attema et al. [12, Proposition 2] to bound the probability that an algorithm
T does not obtain a tree of accepting transcripts in an expected number of runs. This happens
with probability at most

1−
acc− (q + 1)

(
3n+5
p

)
1− 3n+5

p

Then we analyze the case that one of the proofs in the tree T outputted by T is not accepting
by the ideal verifier. This discrepancy can be used to break an instance of an updatable dlog
assumption which happens with probability at most (3n+ 6) · εudlog(λ).

Proof. LetAH,UpdO(1λ; r) be the adversary who outputs (x, π) such that PFS.V accepts the proof.
Let T be a tree-building algorithm of Lemma 4.5.5 that outputs a tree T, and let Extss be an
extractor that given the tree output by T reveals the witness for x. The main idea of the proof is to
show that an adversary who breaks rewinding-based knowledge soundness can be used to break
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a udlog-problem instance. The proof goes by game hops. Note that since the tree branches after
A’s 3-rd message, the instance x, commitments [a(χ), b(χ), c(χ), z(χ), tlo(χ), tmid(χ), thi(χ)]1,
and challenges α, β, γ are the same in all the transcripts. Also, the tree branches after the third
adversary’s message where the challenge ς is presented, thus tree T is built using different values
of ς . We consider the following games.

Game 0: In this game the adversary wins if it outputs a valid instance–proof pair (x, π), and the
extractor Extss does not manage to output a witness w such thatR(x,w) holds.

Game 1: In this game the environment aborts the game if the tree building algorithm T fails in
building a tree of accepting transcripts T.

Game 0 to Game 1: By Lemma 4.5.5 probability that Game 1 is aborted, while Game 0 is not,
is at most

1−
acc− (q + 1)

(
3n+5
p

)
1− 3n+5

p

.

Game 2: In this game the environment additionally aborts if at least one of its proofs in T is not
accepting by an ideal verifier.

Game 1 to Game 2: As usual, we show a reduction that breaks an instance of a udlog assumption
when Game 2 is aborted, while Game 1 is not.

LetRudlog be a reduction that gets as input an (n+ 5, 1)-udlog instance [1, . . . , χn+5]1 , [χ]2.
Then it can update the instance to another one

[
1, . . . , χ′n+5

]
1
, [χ′]2. Eventually, the reduction

outputs χ′. The reduction Rudlog proceeds as follows. First, it builds A’s SRS srs using the
input udlog instance. Then it processes the adversary’s update query by adding it to the list
Qsrs and passing it to its own update oracle getting instance

[
1, . . . , χ′n+5

]
1
, [χ′]2. The updated

SRS srs′ is then computed and given to A. Rudlog also takes care of the random oracle queries
made by A. It picks their answers honestly and write them in QH. The reduction then starts
T (srs,A, r, QH, Qsrs).

Let (1,T) be the output returned by T . Let x be a relation proven in T. Consider a transcript
π ∈ T such that vex,π(X) ̸= 0, but vex,π(χ′) = 0. Since A is algebraic, all group elements
included in T are extended by their representation as a combination of the input G1-elements.
Hence, all coefficients of the verification equation polynomial vex,π(X) are known. Eventually,
the reduction finds vex,π(X) zero points and returns χ′ which is one of them.

Hence, the probability that the adversary wins in Game 2 but does not win in Game 1 is
upper-bounded by (3n+ 6) · εudlog(λ).

Conclusion:
Note that the adversary can win in Game 2 only if T manages to produce a tree of accepting

transcriptsT, such that each of the transcripts inT is accepting by an ideal verifier. Note that since
T produces (3n+ 6) accepting transcripts for different challenges ς , it obtains the same number
of different evaluations of polynomials a(X), b(X), c(X), z(X), t(X). Since all the transcripts
are accepting by an idealised verifier, the equality between polynomial t(X) and combination
of polynomials a(X), b(X), c(X), z(X) defined in prover’s 3-rd message description holds.
Hence, a(X), b(X), c(X) encodes the valid witness for the proven statement. Extss can recreate
polynomials’ coefficients by interpolation and reveal the witness given (3n+ 6) evaluations.
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Hence, the probability that the adversary wins in Game 0 is upper-bounded by

εks(λ, acc, q) ≤

1−
acc− (q + 1)

(
3n+5
p

)
1− 3n+5

p

+ (3n+ 6) · εudlog(λ) .

Trapdoor-Less Zero-Knowledge of Plonk

Lemma 4.6.3. PFS is 3-programmable trapdoor-less zero-knowledge.

Intuition. The simulator, that does not know the SRS trapdoor can make a simulated proof by
programming the random oracle. It proceeds as follows. It picks a random witness and behaves
as an honest prover up to the point when a commitment to the polynomial t(X) is sent. Since
the simulator picked a random witness and t(X) is a polynomial only (modulo some negligible
function) when the witness is correct, it cannot compute commitment to t(X) as it is a rational
function. However, the simulator can pick a random challenge ς and a polynomial t̃(X) such
that t(ς) = t̃(ς). Then the simulator continues behaving as an honest prover. We argue that such
a simulated proof is indistinguishable from a real one.

Proof. As noted in Section 4.2.1, subvertible zero-knowledge implies updatable zero-knowledge.
Hence, here we show that Plonk is TLZK even against adversaries who picks the SRS on its own.

The adversary A(1λ) picks an SRS srs and instance–witness pair (x,w) and gets a proof π
simulated by the simulator Sim which proceeds as follows.

For its 1-st message the simulator picks randomly both the randomizers b1, . . . , b6 and sets
wi = 0 for i ∈ [1 .. 3n]. Then Sim outputs [a(χ), b(χ), c(χ)]1. For the first challenge, the
simulator picks permutation argument challenges β, γ randomly.

For its 2-nd message, the simulator computes z(X) from the newly picked randomizers
b7, b8, b9 and coefficients of polynomials a(X), b(X), c(X). Then it evaluates z(X) honestly and
outputs [z(χ)]1. Challenge α that should be sent by the verifier after the simulator’s 2 message is
picked by the simulator at random.

In its 3-rd message the simulator starts by picking at random a challenge ς , which in the
real proof comes as a challenge from the verifier sent after the prover sends its 3-rd message.
Then Sim computes evaluations a(ς), b(ς), c(ς), Sσ1(ς), Sσ2(ς),PI(ς), L1(ς),ZH(ς), z(ςω) and
computes t(X) honestly. Since for a random a(X), b(X), c(X), z(X) the constraint system
is (with overwhelming probability) not satisfied and the constraints-related polynomials are
not divisible by ZH(X), hence t(X) is a rational function rather than a polynomial. Then, the
simulator evaluates t(X) at ς and picks randomly a degree-(3n + 15) polynomial t̃(X) such
that t(ς) = t̃(ς) and publishes a commitment [̃tlo(χ), t̃mid(χ), t̃hi(χ)]1. After that the simulator
outputs ς as a challenge.

For the next message, the simulator computes polynomial r(X) as an honest prover would,
cf. Section 4.6.1 and evaluates r(X) at ς .

The rest of the evaluations are already computed, thus Sim simply outputs a(ς), b(ς), c(ς),
Sσ1(ς), Sσ2(ς), t(ς), z(ςω) . After that it picks randomly the challenge v, and prepares the the
last message as an honest prover would. Eventually, Sim and outputs the final challenge, u, by
picking it at random as well.
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We argue about zero-knowledge as usual. The property holds since the polynomials that
has witness elements at their coefficients are randomized by at least two randomizers and are
evaluated at at most two points; and the simulator computes all polynomials as an honest prover
would.

Simulation Extractability of PFS

Since Lemmas 4.6.1, 4.6.2, and 4.6.3 hold, P is 3-UR, rewinding-based knowledge sound
and trapdoor-less zero-knowledge. We now make use of Theorem 4.3.1 and show that PFS is
simulation-extractable as defined in 4.2.3.

Corollary 4.6.4 (Simulation extractability of PFS). PFS is updatable simulation-extractable
against any PPT adversaryA who makes up to q random oracle queries and returns an accepting
proof with probability at least acc with extraction failure probability

εse(λ, acc, q) ≤
(
1− acc− εur(λ)− (q + 1)εerr(λ)

1− εerr(λ)

)
+ (3n+ 6) · εudlog(λ),

where εerr(λ) =
3n+5
p

, εur(λ) ≤ εbind(λ) + εop(λ), p is the size of the field, and n is the number
of constrains in the circuit.

4.7 Non-malleability of Sonic

4.7.1 Preliminaries
Definition 4.7.1 ((q1, q2)-ldlog assumption). Let A be a PPT adversary that gets as input
[χ−q1 , . . . , 1, . . . , χq1 ]1 , [χ

−q2 , . . . , 1, . . . , χq2 ]2, for some randomly picked χ ∈ Fp, the assump-
tion requires that A cannot compute χ. That is

Pr
[
χ = A(

[
χ−q1 , . . . , 1, . . . , χq1

]
1
,
[
χ−q2 , . . . , 1, . . . , χq2

]
2
)
∣∣χ←$ Fp

]
≤ negl(λ).

Definition 4.7.2 ((q1, q2)-uldlog assumption). Let A be a PPT adversary that gets oracle access
to UpdO with internal algorithms (GenSRSldlog,Updldlog,VerifySRS), where GenSRSldlog and
Updldlog are defined as follows:

• GenSRSldlog(λ) samples χ←$ Fp and defines

Ch := (
[
χ−q1 , . . . , 1, χ, . . . , χq1

]
1
,
[
χ−q2 , . . . , 1, χ, . . . , χq2

]
2
).

• Updldlog(Ch, {ρj}nj=1) parses Ch as
([
{Ai}q1i=−q1

]
1
,
[
{Bi}q2i=−q2

]
2

)
, samples χ̃ ←$ Fp,

and defines C̃h :=
([
{χ̃iAi}q1i=−q1

]
1
,
[
{χ̃iBi}q2i=−q2

]
2

)
.

Then
Pr
[
χ̄← AUpdO(λ)

]
≤ negl(λ),

where
([
{χ̄i}q1i=−q1

]
1
,
[
{χ̄i}q2i=−q2

]
2

)
is the finalized challenge.
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GenSRS(1λ,max)
α, χ←$ F2

p

return
[
{χi}ni=−n, {αχi}ni=−n,i ̸=0

]
1
,[

{χi, αχi}ni=−n

]
2
, [α]T

Com(srs,max, f(X))
c(X)← α ·Xd−maxf(X)

return [c]1 = [c(χ)]1

Op(srs, z, s, f(X))

o(X)← f(X)− f(z)

X − z
return [o(χ)]1

Verify(srs,max, [c]1 , z, s, [o(χ)]1)
if [o(χ)]1 • [αχ]2 + [s− zo(χ)]1 • [α]2 =

[c]1 •
[
χ−d+max

]
2
then return 1

else return 0.

Figure 4.6: PCS polynomial commitment scheme.

4.7.2 Sonic Protocol Rolled-out
In this section we present Sonic’s constraint system and algorithms. Reader familiar with them
may jump directly to the next section.
The Constraint System Fig. 4.6 presents a variant of KZG [123] polynomial commitment
schemes used in Sonic. Sonic’s system of constraints composes of three n-long vectors a, b, c
which corresponds to left and right inputs to multiplication gates and their outputs. It hence
holds a · b = c.

There is also Q linear constraints of the form

auq + bvq + cwq = kq,

where uq,vq,wq are vectors for the q-th linear constraint with instance value kq ∈ Fp. Further-
more define polynomials

ui(Y ) =
Q∑

q=1

Y q+nuq,i ,

vi(Y ) =
Q∑

q=1

Y q+nvq,i ,

wi(Y ) = −Y i − Y −i +
Q∑

q=1

Y q+nwq,i ,

k(Y ) =
Q∑

q=1

Y q+nkq.

(4.3)

Sonic constraint system requires that

a⊤ · u(Y ) + b⊤ · v(Y ) + c⊤ ·w(Y ) +
n∑

i=1

aibi(Y
i + Y −i)− k(Y ) = 0. (4.4)

In Sonic we will use commitments to the following polynomials.

r(X, Y ) =
n∑

i=1

(
aiX

iY i + biX
−iY −i + ciX

−i−nY −i−n
)

s(X, Y ) =
n∑

i=1

(
ui(Y )X−i + vi(Y )X i + wi(Y )X i+n

)
t(X, Y ) = r(X, 1)(r(X, Y ) + s(X, Y ))− k(Y ) .
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Polynomials r(X, Y ), s(X, Y ), t(X, Y ) are designed such that t(0, Y ) = a⊤ · u(Y ) + b⊤ ·
v(Y ) + c⊤ · w(Y ) +

∑n
i=1 aibi(Y

i + Y −i) − k(Y ). That is, the prover is asked to show that
t(0, Y ) = 0, cf. Eq. (4.4).

Furthermore, the commitment system in Sonic is designed such that it is infeasible for a PPT
algorithm to commit to a polynomial with non-zero constant term.
Algorithms Rolled out Sonic SRS generation GenSRS(R). The SRS generating algorithm picks
randomly α, χ←$ Fp and outputs

srs =
([
{χi}di=−d, {αχi}di=−d,i ̸=0

]
1
,
[
{χi, αχi}di=−d

]
2
, [α]T

)
Sonic prover P(srs, x,w = a, b, c).

Message 1 The prover picks randomly randomizers cn+1, cn+2, cn+3, cn+4 ←$ Fp. Sets r(X, Y )←
r(X, Y )+

∑4
i=1 cn+iX

−2n−i. Commits to r(X, 1) and outputs [r]1 ← Com(srs, n, r(X, 1)).
Then it computes challenge y = H(π̃[0..1]).

Message 2 P commits to t(X, y) and outputs [t]1 ← Com(srs, d, t(X, y)). Then it gets a
challenge z = H(π̃[0..2]).

Message 3 The prover computes commitment openings. That is, it outputs

[oa]1 = Op(srs, z, r(z, 1), r(X, 1))

[ob]1 = Op(srs, yz, r(yz, 1), r(X, 1))

[ot]1 = Op(srs, z, t(z, y), t(X, y))

along with evaluations a′ = r(z, 1), b′ = r(y, z), t′ = t(z, y). Then it engages in the
signature of correct computation playing the role of the helper, i.e. it commits to s(X, y)
and sends the commitment [s]1, commitment opening

[os]1 = Op(srs, z, s(z, y), s(X, y)),

and s′ = s(z, y). Then it obtains a challenge u = H(π̃[0..3]).

Message 4 For the next message the prover computes [c]1 ← Com(srs, d, s(u, Y )) and computes
commitments’ openings

[w]1 = Op(srs, u, s(u, y), s(X, y)),

[qy]1 = Op(srs, y, s(u, y), s(u, Y )),

and returns [w]1 , [qy]1 , s = s(u, y). Eventually the prover gets the last challenge z′ =
H(π̃[0..4]).

Message 5 For the final message, P computes opening [qz′ ]1 = Op(srs, z′, s(u, z′), s(u,X)) and
outputs [qz′ ]1.
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Sonic verifier V(srs, x, π). The verifier in Sonic runs as subroutines the verifier for the polynomial
commitment. That is it sets t′ = a′(b′ + s′)− k(y) and checks the following:

PCS.Verify(srs, n, [r]1 , z, a
′, [oa]1),

PCS.Verify(srs, n, [r]1 , yz, b
′, [ob]1),

PCS.Verify(srs, d, [t]1 , z, t
′, [ot]1),

PCS.Verify(srs, d, [s]1 , z, s
′, [os]1),

PCS.Verify(srs, d, [s]1 , u, s, [w]1),

PCS.Verify(srs, d, [c]1 , y, s, [qy]1),

PCS.Verify(srs, d, [c]1 , z
′, s(u, z′), [qz′ ]1),

and accepts the proof iff all the checks holds. Note that the value s(u, z′) that is recomputed
by the verifier uses separate challenges u and z′. This enables the batching of many proof and
outsourcing of this part of the proof to an untrusted helper.

4.7.3 Unique Opening Property of PCS

Lemma 4.7.3. PCS has the unique opening property in the AGM.

Proof. Let z ∈ Fp be the attribute the polynomial is evaluated at, [c]1 ∈ G be the commitment,
s ∈ Fp the evaluation value, and o ∈ G be the commitment opening. We need to show that for
every PPT adversary A probability

Pr

Verify(srs, [c]1 , z, s, [o]1) = 1,

Verify(srs, [c]1 , z, s̃, [õ]1) = 1

∣∣∣∣∣∣∣ ([c]1 , z, s, [o]1 , [õ]1)← AUpdO(1λ,max)


is at most negligible.

As noted in [91, Lemma 2.2] it is enough to upper bound the probability of the adversary
succeeding against the ideal verifier, who verifies equality between polynomials.

For a polynomial f , its degree upper bound max, evaluation point z, evaluation result s, and
opening [o(X)]1 the ideal verifier checks that

α(Xd−maxf(X) ·X−d+max − s) ≡ α · o(X)(X − z) , (4.5)

what is equivalent to
f(X)− s ≡ o(X)(X − z) . (4.6)

Since o(X)(X − z) ∈ Fp[X] then from the uniqueness of polynomial composition, there is only
one o(X) that fulfills the equation above.

4.7.4 Unique Response Property
The unique response property of SFS follows from the unique opening property of the polynomial
commitment scheme PCS.

Lemma 4.7.4. If a polynomial commitment scheme PCS is evaluation binding with security loss
εbind(λ) and has unique openings property with security loss εop(λ), then SFS is 2-UR against
algebraic adversaries with security loss

2 · εbind(λ) + εop(λ).
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Proof. Let A be an algebraic adversary tasked to break the 2-UR-ness of SFS. We note that to
show 2-UR-ness is is enough to show that the first prover’s message determines, along with the
verifiers challenges, the rest of it. We denote by π0 and π1 the two proofs for the same statement
the adversary outputs. To distinguish polynomials and commitments which an honest prover
sends in the proof from the polynomials and commitments computed by the adversary we write
the latter using indices 0 and 1 (two indices as we have two transcripts), e.g. to describe the
quotient polynomial provided by the adversary we write t0 and t1 instead of t as in the description
of the protocol.

We note that since the unique response property requires from π0 and π1 that the first place
they possibly differ is the 3-th prover’s message, then the challenge z, that is picked by the
adversary after the 2-rd message is the same in both transcripts. This challenge determines the
evaluation point of polynomials r(X, 1), t(X, y) which commitments are already sent.

In its third message, the prover provides evaluations of these polynomials along with their
openings at z or yz. Note that the adversary can output two accepting proofs that differ on their
third message only if it manages to break evaluation binding of one of the opening. Since the
commitment scheme is evaluation binding with security loss εbind(λ), the adversary can make
π0 and π1 differ on the third message with probability at most εbind(λ).

Similarly, in its fourth message, the prover provides an evaluation at u of polynomial s(X, y),
an evaluation at y of s(u, Y ), and the corresponding openings. Note that the adversary can output
two accepting proofs that differ on their fourth message only if it manages to break evaluation
binding of one of the opening. Since the commitment scheme is evaluation binding with security
loss εbind(λ), the adversary can make π0 and π1 differ on the fourth message with probability at
most εbind(λ).

Next, assume that the transcripts are the same up to the fourth message, but differ at the fifth.
In that message, the adversary provides openings of the evaluations. Since the unique opening
property, the adversary can open the valid evaluation of a polynomial to two different values
with probability at most εop(λ).

By the union bound, the adversary is able to break the unique response property with
probability upper bounded by 2εbind(λ) + εop(λ).

4.7.5 Rewinding-Based Knowledge Soundness
Lemma 4.7.5. SFS is (2, n+1)-rewinding-based knowledge sound against algebraic adversaries
who make up to q random oracle queries with security loss

εks(λ, acc, q) ≤

1−
acc− (q + 1)

(
n
p

)
1− n

p

+ (n+ 1) · εuldlog(λ) ,

Here acc is a probability that the adversary outputs an accepting proof, and εuldlog(λ) is the
security of (max,max)-uldlog assumption.

Let AH,UpdO(1λ; r) be the adversary who outputs (x, π) such that SFS.V accepts the proof.
Let T be the tree-building algorithm of Lemma 4.5.5 that outputs a tree T, and let Extss be an
extractor that given the tree output by T reveals the witness for x. The main idea of the proof is
to show that an adversary who breaks rewinding-based knowledge soundness can be used to
break a uldlog-problem instance. The proof goes by game hops. Note that since the tree branches
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after A’s 2-nd message, the instance x, commitments [r(χ, 1), t(χ, y)]1, and challenge y are the
same in all the transcripts. Also, the tree branches after the second adversary’s message where
the challenge z is presented, thus tree T is built using different values of z. We consider the
following games.

Game 0: In this game, the adversary wins if it outputs a valid instance–proof pair (x, π), and the
extractor Extss does not manage to output a witness w such thatR(x,w) holds.

Game 1: In this game, the environment aborts the game if the tree building algorithm T fails in
building a tree of accepting transcripts T.

Game 0 to Game 1: By Lemma 4.5.5 probability that Game 1 is aborted, while Game 0 is not,
is, at most

1−
acc− (q + 1)

(
n
p

)
1− n

p

.

Game 2: In this game the environment additionally aborts if at least one of its proofs in T is not
accepting by an ideal verifier.

Game 1 to Game 2: As usual, we show a reduction that breaks an instance of a uldlog assumption
when Game 2 is aborted, while Game 1 is not.

LetRuldlog be a reduction that gets as input an (max,max)-uldlog instance[
χ−max, . . . , 1, . . . , χmax

]
1
,
[
χ−max, . . . , 1, . . . , χmax

]
2

. Then it can update the instance to another one [χ′−max, . . . , 1, . . . , χ′max]1 , [χ
′−max, . . . , 1, . . . , χ′max]2.

Eventually, the reduction outputs χ′. The reduction Ruldlog proceeds as follows. First, it
builds A’s SRS srs using the input uldlog instance. Then it processes the adversary’s update
query by adding it to the list Qsrs and passing it to its own update oracle getting instance
[χ′−max, . . . , 1, . . . , χ′max]1 , [χ

′−max, . . . , 1, . . . , χ′max]2. The updated SRS srs′ is then computed
and given to A. Ruldlog also takes care of the random oracle queries made by A. It picks their
answers honestly and writes them in QH. The reduction then starts T (srs,A, r, QH, Qsrs).

Let (1,T) be the output returned by T . Let x be a relation proven in T. Consider a transcript
π ∈ T such that vex,π(X) ̸= 0, but vex,π(χ′) = 0. Since A is algebraic, all group elements
included in T are extended by their representation as a combination of the input G1-elements.
Hence, all coefficients of the verification equation polynomial vex,π(X) are known. Eventually,
the reduction finds vex,π(X) zero points and returns χ′ which is one of them.

Hence, the probability that the adversary wins in Game 2 but does not win in Game 1 is
upper-bounded by (n+ 1) · εuldlog(λ).
Conclusion: Note that the adversary can win in Game 2 only if T manages to produce a tree of
accepting transcript T, such that each of the transcripts in T is accepting by an ideal verifier.
Note that since T produces (n+ 1) accepting transcripts for different challenges z, it obtains the
same number of different evaluations of polynomial t(z, y) what allows to extract the witness,
cf. [132].

Hence, the probability that the adversary wins in Game 0 is upper-bounded by

εks(λ, acc, q) ≤

1−
acc− (q + 1)

(
n
p

)
1− n

p

+ (n+ 1) · εuldlog(λ) .
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4.7.6 Trapdoor-Less Zero-Knowledge of Sonic
Lemma 4.7.6. SFS is 2-programmable trapdoor-less zero-knowledge.

Proof. The simulator proceeds as follows.

1. Pick randomly vectors a, b and set

c = a · b. (4.7)

2. Pick randomizers cn+1, . . . , cn+4, honestly compute polynomials r(X, Y ), r′(X, Y ), s(X, Y )
and pick randomly challenges y, z.

3. Output commitment [r]1 ← Com(srs, n, r(X, 1)) and challenge y.

4. Compute

a′ = r(z, 1),

b′ = r(z, y),

s′ = s(z, y).

5. Pick polynomial t(X, Y ) such that

t(X, y) = r(X, 1)(r(X, y) + s(X, y))− k(Y )

t(0, y) = 0

6. Output commitment [t]1 = Com(srs, d, t(X, y)) and challenge z.

7. Continue following the protocol.

We note that the simulation is perfect. This comes since, except polynomial t(X, Y ) all
polynomials are computed following the protocol. For polynomial t(X, Y ) we observe that in
a case of both real and simulated proof the verifier only learns commitment [t]1 = t(χ, y) and
evaluation t′ = t(z, y). Since the simulator picks t(X, Y ) such that

t(X, y) = r(X, 1)(r(X, y) + s(X, y))− k(Y )

Values of [t]1 are equal in both proofs. Furthermore, the simulator picks its polynomial such that
t(0, y) = 0, hence it does not need the trapdoor to commit to it. (Note that the proof system’s
SRS does not allow to commit to polynomials which have non-zero constant term).

Remark 4.7.7. As noted in [132], Sonic is statistically subversion zero-knowledge (Sub-ZK). As
noted in [4], one way to achieve subversion zero-knowledge is to utilize an extractor that extracts a
SRS trapdoor from a SRS-generator. Unfortunately, a NIZK made subversion zero-knowledge by
this approach cannot achieve perfect Sub-ZK as one has to count in the probability of extraction
failure. However, with the simulation presented in Lemma 4.7.6, the trapdoor is not required for
the simulator as it is able to simulate the execution of the protocol just by picking appropriate
(honest) verifier’s challenges. This result transfers to SFS, where the simulator can program the
random oracle to provide challenges that fits it.
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4.7.7 Simulation Extractability of SFS

Since Lemmas 4.7.4, 4.7.5, and 4.7.6 hold, SFS is 2-UR, rewinding-based knowledge sound
and trapdoor-less zero-knowledge. We now make use of Theorem 4.3.1 and show that SFS is
simulation-extractable as defined in 4.2.3.

Corollary 4.7.8 (Simulation extractability of SFS). SFS is updatable simulation-extractable
against any PPT adversaryA who makes up to q random oracle queries and returns an accepting
proof with probability at least acc with extraction failure probability

εse(λ, acc, q) ≤
(
1− acc− εur(λ)− (q + 1)εerr(λ)

1− εerr(λ)

)
+ (n+ 1) · εuldlog(λ),

where εerr(λ) = n
p
, p is the size of the field, and n is the number of constrains in the circuit.

4.8 Non-malleability of Marlin
We show that Marlin is simulation-extractable. To that end, we show that Marlin has all the
required properties: has unique response property, is rewinding-based knowledge sound, and
its simulator can provide indistinguishable proofs without a trapdoor, just by programming the
random oracle.

4.8.1 Marlin Protocol Rolled-out
Marlin uses R1CS as its arithmetization method. Given instance x, witness w and |H| × |H|
matrices A,B,C, the prover shows that A(x⊤,w⊤)⊤ ◦B(x⊤,w⊤)⊤ = C(x⊤,w⊤)⊤, where ◦
denotes entry-wise product.

We assume that the matrices have at most |K| non-zero entries. Obviously, |K| ≤ |H|2. Let
b = 3, the upper-bound of polynomial evaluations the prover has to provide for each of the sent
polynomials. Denote by d an upper-bound for {|H|+ 2b− 1, 2|H|+ b− 1, 6|K| − 6}.

The idea of showing that the constraint system is fulfilled is as follows. Denote by z = (x,w).
The prover computes polynomials zA(X), zB(X), zC(X) which encode vectors Az,Bz,Cz
and have degree < |H|. Importantly, when constraints are fulfilled, zA(X)zB(X) − zC(X) =
h0(X)ZH(X), for some h0(X) and vanishing polynomial ZH(X). The prover sends commitments
to these polynomials and shows that they have been computed correctly. More precisely, it shows
that

∀M ∈ {A,B,C},∀κ ∈ H, zM(κ) =
∑
ι∈H

M [κ, ι]z(ι). (4.8)

The ideal verifier checks the following equalities

h3(β3)ZK(β3) = a(β3)− b(β3)(β3g3(β3) + σ3/|K|)
r(α, β2)σ3 = h2(β2)ZH(β2) + β2g2(β2) + σ2/|H|

s(β1) + r(α, β1)(
∑
M

ηMzM(β1))− σ2z(β1) = h1(β1)ZH(β1) + β1g1(β1) + σ1/|H|

zA(β1)zB(β1)− zC(β1) = h0(β1)ZH(β1)

(4.9)

where gi(X), hi(X), i ∈ [1 .. 3], a(X), b(X), σ1, σ2, σ3 are polynomials and variables required
by the sumcheck protocol which allows the verifier to efficiently verify that Eq. (4.8) holds.
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4.8.2 Unique Response Property
Lemma 4.8.1. Let PC be a commitment of knowledge that is evaluation binding with security
loss εbind(λ) and has unique opening property with security loss εop(λ). Then MFS is 2-UR
against algebraic adversaries with security loss 2 · εbind(λ) + εop(λ).

Proof. The proof is similar to the proof of Lemma 4.6.1 and Lemma 4.7.4. An adversary who
can break the 2-unique response property of MFS can be either used to break the commitment
scheme’s evaluation binding or unique opening property. The former happens with the probability
upper-bounded by 2 · εbind(λ), the latter with probability at most εop(λ). By the union bound,
the adversary is able to break the unique response property with probability upper bounded by
2 · εbind(λ) + εop(λ).

4.8.3 Rewinding-Based Knowledge Soundness
Lemma 4.8.2. MFS is (2, 2n+3)-rewinding-based knowledge sound against algebraic adversaries
who make up to q random oracle queries with security loss

εks(λ, acc, q) ≤

1−
acc− (q + 1)

(
2n+2
p

)
1− 2n+2

p

+ (2n+ 3) · εudlog(λ) ,

Here acc is a probability that the adversary outputs an acceptable proof, and εudlog(λ) is the
security of (2n+ 2, 1)-udlog assumption.

Proof. The proof is similar to the proof of Lemma 4.6.2 and Lemma 4.7.5. We use Attema et
al. [12, Proposition 2] to bound the probability that the tree-building algorithm T does not obtain
a tree of acceptable transcript in an expected number of runs. This happens with probability at
most

1−
acc− (q + 1)

(
2n+2
p

)
1− 2n+2

p

Let T be the tree output by T . If one of the proofs in T is not accepting by the ideal verifier,
one can break an instance of an updatable dlog assumption which happens with probability at
most (2n+ 3) · εudlog(λ). In the case that all the transcripts are accepting by the ideal verifier,
but Extss fails to extract a valid witness from T, one can break the soundness of the ideal verifier
in one of the transcripts. Taking a union bound completes the proof.

4.8.4 Trapdoor-Less Zero-Knowledge of Marlin
Lemma 4.8.3. MFS is 2-programmable trapdoor-less zero-knowledge.

Proof. The simulator follows the protocol except that it picks the challengesα, ηA, ηB, ηC , β1, β2, β3

before it picks the polynomials it sends.
First, it picks z̃A(X), z̃B(X) at random and z̃C(X) such that z̃A(β1)z̃B(β1) = z̃C(β1).

Given the challenges and polynomials z̃A(X), z̃B(X), z̃C(X) the simulator computes σ1 ←∑
κ∈H s(κ) + r(α,X)(

∑
M∈{A,B,C} ηM z̃M(X))−

∑
M∈{A,B,C} ηM rM(α,X)z̃(X).

Then the simulator starts the protocol and follows it, except it programs the random oracle
such that on partial transcripts, it returns the challenges already picked by Sim.
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4.8.5 Simulation Extractability of MFS

Since Lemmas 4.8.1, 4.8.2, and 4.8.3 hold, MFS is 2-UR, rewinding-based knowledge sound
and trapdoor-less zero-knowledge. By making use of Theorem 4.3.1, we conclude that MFS is
simulation-extractable as defined in 4.2.3.

Corollary 4.8.4 (Simulation extractability of MFS). MFS is updatable simulation-extractable
against any PPT adversary A who makes up to q random oracle queries and returns an
acceptable proof with probability at least acc with extraction failure probability

εse(λ, acc, q) ≤
(
1− acc− εur(λ)− (q + 1)εerr(λ)

1− εerr(λ)

)
+ (2n+ 3) · εudlog(λ),

where εerr(λ) = 2n+2
p

, p is the size of the field, and n is the number of constrains in the circuit.
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Chapter 5

Encryption to the Future

In this chapter we present our results on encryption to the future, first appeared in [49]. The
contents of this chapter are taken almost verbatim from [49].

5.1 Introduction
Most cryptographic protocols assume that parties’ identities are publicly known. This is a natural
requirement, since standard secure channels are identified by a sender and a receiver. However,
this status quo also makes it easy for adaptive (or proactive) adversaries to readily identify which
parties are executing a protocol and decide on an optimal corruption strategy. In more practical
terms, a party with a known identity (e.g. IP address) is at risk of being attacked.

A recent line of work [33, 102, 103] has investigated means for avoiding adaptive (or
proactive) corruptions by having different randomly chosen committees of anonymous parties
execute each round of a protocol. The rationale is that parties whose identities are unknown
cannot be purposefully corrupted. Hence, having each round of a protocol executed by a fresh
anonymous committee makes the protocol resilient to such powerful adversaries. However, this
raises a new issue:

How can past committees efficiently transfer secret states to future yet-to-be-assigned
anonymous committees?

5.1.1 Motivation: Role Assignment
The task of sending secret messages to a committee member that will be elected in the future can
be abstracted as role assignment, a notion first introduced in [33] and further developed in [102].
This task consists of sending a message to an abstract role R at a given point in the future. A
role is just a bit-string describing an abstract role, such as R =“party number j in round sl of
the protocol Γ”. Behind the scenes, there is a mechanism that samples the identity of a random
party Pi and associates this machine to the role R. Such a mechanism allows anyone to send a
message m to R and have m arrive at Pi chosen at some point in the future to act as R. A crucial
point is: no one should know the identity of Pi even though Pi learns that it is chosen to act as R.

The approaches proposed in [33, 102, 103] for realizing role assignment all use an underlying
Proof-of-Stake (PoS) blockchain (e.g. [73]). On a blockchain, a concrete way to implement role
assignment is to sample a fresh key pair (skR, pkR) for a public key encryption scheme, post
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(R, pkR) on the blockchain and somehow send skR to a random Pi without leaking the identity
of this party to anyone. Once (R, pkR) is known, every party has a target-anonymous channel
to Pi and is able to encrypt under pkR and post the ciphertext on the blockchain. Notice that
using time-lock puzzles (or time-locked commitments/encryption) is not sufficient for achieving
this notion, since only the party or parties elected for a role should receive a secret message
encrypted for that role, while time-lock puzzles allow any party to recover the message if they
invest enough computing time.

A shortcoming of the approaches of [33, 102, 103] is that, besides an underlying blockchain,
they require an auxiliary committee to aid in generating (skR, pkR) and selecting Pi. In the
case of [33], the auxiliary committee performs cheap operations but can adversarially influence
the probability distribution with which Pi is chosen. In the case of [102, 103], the auxiliary
committee cannot bias this probability distribution but must perform very expensive operations
(relying on Mix-Nets or FHE; see also Section 5.1.3). Moreover, these approaches have another
caveat: they can only be used to select Pi to act as R according to a probability distribution
already known at the time the auxiliary committee outputs (R, pkR). Hence, they only allow
sending messages to future committees that have been recently elected. Later we explicitly
consider this weaker setting—where we want to communicate with a “near-future” committee
(i.e., whose distribution is known)—and dub it “Encryption to the Current Winner1” (ECW).

In this paper we further investigate solutions to the role-assignment problem2. Taking a
step back from specific solutions for role assignment, we will focus on how to non-interactively
encrypt to a future role with IND-CPA security without the aid of an auxiliary committee. We
also discuss how to extend our approach to IND-CCA2 security and how to allow winners of a
role to authenticate themselves when sending a message, both of which we can achieve with
standard techniques.

5.1.2 Our Contributions
We look at the issue of sending messages to future roles as a problem on its own and introduce
the Encryption to the Future (EtF) primitive as a central tool to solve it. Apart from defining this
primitive and showing constructions based on previous works, we propose constructions based
on new insights and investigate limits of EtF in different scenarios. Our general constructions for
EtF work by lifting a weaker primitive, namely encryption for the aforementioned “near-future”
setting, or ECW. Before providing further details, we summarize our contributions as follows:

1The word “winner” here refers to winning an assigned role and the underlying lottery of the PoS blockchain
(see remainder of introduction).

2The family of protocols we consider actually has two role-related aspects to solve. The first—and the focus of
this paper—is the aforementioned role assignment (RA) which deals with the sending of messages to future roles of
a protocol while hiding the physical machine executing the role. The other aspect is role execution (RX) which
focuses on the execution of the specific protocol that runs on top of the RA mechanism, i.e., what messages are sent
to which roles and what specification the protocol implements. In [102] the so-called You Only Speak Once (YOSO)
model is introduced for studying RX. In the YOSO model the protocol execution is between abstract roles which
can each speak only once. Later these can then be mapped to physical machines using an RA mechanism. The work
in [102] shows that once we can obtain RA in a synchronous model, then any well-formed ideal functionality can be
implemented in the YOSO model with security against malicious, adaptive corruption of a minority of machines.
Concretely, [102] gives an ideal functionality for RA and shows that a YOSO protocol for abstract roles can be
compiled into the RA-hybrid model to give a protocol secure against adaptive attacks.
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• A definition for the notion of non-interactive Encryption to the Future (EtF) in terms of an
underlying blockchain and an associated lottery scheme that selects parties in the future to
receive messages for a role. We study the strength of EtF as a primitive and prove that an
EtF scheme—encryption towards parties selected at arbitrary points in the future—implies
a flavor of witness encryption for NP.

• A novel construction of Encryption to the Current Winner (ECW), i.e. EtF where the
receiver of a message is determined by the current state of the blockchain, which can be
instantiated without auxiliary committees from standard assumptions via a construction
based on generic primitives.

• A transformation from ECW to EtF through an auxiliary committee holding a small
state, i.e., with communication complexity independent of plaintext size |m| (in contrast
to [33, 102, 103] where a committee’s state grows with |m|).

• An application of ECW as a central primitive for realizing role assignment in protocols
that require it (e.g. [33, 102, 103]).

Our EtF notion arguably provides a useful abstraction for the problem of transferring secret
states to secret committees. Our ECW construction is the first primitive to realize role assignment
without the need for an auxiliary committee. Moreover, building on new insights from our
EtF notion and constructions, we show the first protocol for obtaining role assignment with no
constraints on when parties are chosen to act as the role. While our protocol uses auxiliary
committees, it improves on previous work requiring a communication complexity independent
of the plaintext length.
We now elaborate on our results, discussing the intuition behind the notion of EtF, its constructions
and its fundamental limits.

Encryption to the Future (EtF)—Section 5.3. As in previous works [33, 102, 103], an EtF
scheme is defined with respect to an underlying PoS blockchain. We naturally use core features
of the PoS setting to define what “future” means. The vast majority of PoS blockchains (e.g.
[73]) associates a slot number to each block and are endowed with a lottery that selects parties
to generate a block according to a stake distribution (i.e. the probability a party is selected is
proportional to the stake the party controls). Thus, in EtF, we let a message be encrypted towards
a party that is selected by the underlying blockchain’s lottery scheme at a given future slot. We
can generalize this and let the lottery select parties for multiple roles associated to each slot (so
that committees consisting of multiple parties can be elected for a single point in time). An
important point of our EtF definition is that it does not impose any constraints on the underlying
blockchain’s lottery scheme (e.g. it is not required to be anonymous) or on the slot when a party
is supposed to be chosen to receive a message sent to a given role (i.e. party selection for a given
role may happen w.r.t. a future stake distribution).

Relation to “Blockchain Witness Encryption” (BWE)—Section 5.8. We show that EtF
implies a version of witness encryption [98] over a blockchain (similar to that of [112]). The crux
of the proof: if we can encrypt a message towards a role assigned to a party only at an arbitrary
point in the future then we can easily construct a witness encryption scheme exploiting EtF and
a smart contract on the EtF’s underlying blockchain. We also prove the opposite direction (BWE
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implies EtF) showing that the notions are similar from a feasibility standpoint. But this also
shows another important point: to implement non-interactive EtF, we would plausibly need
strong assumptions (e.g., full-blown WE).

Encryption to the Current Winner (ECW)—Section 5.3. By the previous result we know
that, unless we turn to strong assumptions, we may not construct a fully non-interactive EtF
(i.e., without auxiliary committees); therefore, we look for efficient ways to construct EtF under
standard assumptions while minimizing interaction. As a first step towards such a construction,
we define the notion of Encryption to a Current Winner (ECW), which is a restricted version
of EtF where messages can only be encrypted towards parties selected for a role whose lottery
parameters are available for the current slot, the one in which we encrypt (this is as in previous
constructions [33, 102, 103]).

Constructing ECW (non-interactively)—Section 5.5. We show that it is possible to construct
a fully non-interactive ECW scheme from standard assumptions. Our construction relies on a
milder flavor of witness encryption, which we call Witness Encryption over Commitments (cWE)
and define it in Section 5.4. This primitive is significantly more restricted than full-fledged WE
(see also discussion in Remark 5.4.1), but still powerful enough: we show in Section 5.5.1 that
ECW can be constructed in a black-box manner from cWE, which in turn can be constructed
from oblivious transfer and garbled circuits (Section 5.4.2). This construction improves over the
previous results [33, 102, 103] since it does not rely on auxiliary committees.

Instantiating YOSO MPC using ECW—Section 5.6. The notion of ECW is more restricted
than EtF, but it can still be useful in applications. We show how to use it as a building block for
the YOSO MPC protocol of [102]. Here, each of the rounds in an MPC protocol is executed by a
different committee. This same committee will simultaneously transfer its secret state to the next
(near-future) committee, which in turn remains anonymous until it transfers its own secret state
to the next committee, and so on. This setting clearly matches what ECW offers as a primitive,
but it also introduces a few more requirements: 1. ECW ciphertexts must be non-malleable, i.e.
we need an IND-CCA secure ECW scheme; 2. Only one party is selected for each role; 3. A
party is selected for a role at random with probability proportional to its relative stake on the
underlying PoS blockchain; 4. Parties selected for roles remain anonymous until they choose
to reveal themselves; 5. A party selected for a role must be able to authenticate messages on
behalf of the role, i.e. publicly proving that it was selected for a certain role and that it is the
author of a message. We show that all of these properties can be obtained departing from an
IND-CPA secure ECW scheme instantiated over a natural PoS blockchain (e.g. [73]). First, we
observe that VRF-based lottery schemes implemented in many PoS blockchains are sufficient to
achieve properties 1, 2 and 3. We then observe that natural block authentication mechanisms
used in such PoS blockchains can be used to obtain property 4. Finally, we show that standard
techniques can be used to obtain an IND-CCA secure ECW scheme from an IND-CPA secure
ECW scheme.

Constructing EtF from ECW (interactively)—Section 5.7. Since we argued the implausibility
of constructing EtF non-interactively from standard assumptions, we study how to transform an
ECW scheme into an unrestricted EtF scheme when given access to an auxiliary committee but
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Type Scheme Communication Committee? Interaction?

ECW

CaBKaS [33] O(1) yes yes
RPIR [103] O(1) yes yes

cWE (MS-NISC) (Sec. 5.4.2) O(N) no no*
cWE (GC+OT) (Sec. 5.4.2) O(N) no no*

EtF IBE (Sec. 5.7) O(1) yes yes
Full-fledged WE O(1) no no

Figure 5.1: The column “Committee?” indicates whether a committee is required. The column
“Communication” refers to whether the communication complexity grows or not with N , the
number of all parties. We denote by an asterisk non-interactive solutions that require sending a
first reusable message during the initial step.

with “low communication” (and still from standard assumptions). We explain what we mean
by “low communication” by an example of its opposite: in previous works ([33, 102, 103])
successive committees were required to store and reshare secret shares of every message to be
sent to a party selected in the future. That is, their communication complexity grows both with
the number and the amount and length of the encrypted messages. In contrast, our solution has
communication complexity independent of the plaintext length. How our transformation from
ECW to EtF works: we associate each role in the future to a unique identity of an Identity Based
Encryption scheme (IBE); to encrypt a message towards a role we apply the encryption of the
IBE scheme. When, at any point in the future, a party for that role is selected, a committee
generates and delivers the corresponding secret key for that role/identity. To realize the latter
step, we apply YOSO MPC instantiated from ECW as shown in Section 5.6. In contrast to
previous schemes, our auxiliary committee only needs to hold shares of the IBE’s master secret
key and so it performs communication/computation dependent on the security parameter but not
on the length/amount of messages encrypted to the future.

5.1.3 Previous Works
We compare previous works related to our notions of EtF and ECW (encryption to future and
current winner, respectively) in Fig. 5.1.

Encryption to the Current Winner (ECW). We recall that ECW is an easier setting than
EtF: both the stake distribution and the randomness extracted from the blockchain are static and
known at the time of encryption. This means that all of the parameters except the secret key of
the lottery winner are available to the encryption algorithm. We now survey works that solved
this problem and compare them to our solutions:

• “Can a Blockchain Keep a Secret?" (CaBKaS) [33]. The work of [33] addresses the
setting where a dynamically changing committee (over a public blockchain) maintains a
secret. The main challenge in order for the committee to securely reshare its secret can be
summarized as: how to select a small committee from a large population of parties so that
everyone can send secure messages to the committee members without knowing who they
are? The solution of [33] is to select the “secret-holding” committee by having another
committee, a “nominating committee”, that nominates members of the former (while the
members of the nominating committee are self-nominated).
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One can see the nominating committee as a tool providing the ECW functionality. A
major caveat in such a solution, however, is that to guarantee an honest majority in the
committees, [33] can only tolerate up to 1/4 as the fraction of corrupted parties. This
is because corrupted nominators can always select corrupted parties, whereas honest
nominators may select corrupted parties by chance. We can improve this through our
non-interactive ECW: we can remove the nominating committee and just let the current
committee ECW-encrypt their secret shares to the roles of the next committee.

• “Random-Index PIR” (RPIR) [103]. The recent work of [103] defines a new flavour of
Private Information Retrieval (PIR) called Random-index PIR (or RPIR) that allows each
committee to perform the nomination task by themselves. While RPIR improves on [33]
(not requiring a nominating committee and tolerating up to 1/2 of corrupted parties), its
constructions are inefficient, either based on Mix-Nets or Fully Homomorphic Encryption
(FHE). The construction based on Mix-Nets uses k shufflers, where k is the security param-
eter, and has an impractical communication complexity of O(nk2), where n is the number
of public keys that each shuffler broadcasts. The FHE-based construction gives a total
communication complexity of O(k3) where O(k) is the length of an FHE decryption share.

WE over commitments (cWE). Benhamouda and Lin [29] defined a type of witness encryption,
called “Witness Encryption for NIZK of Commitments”. In their setting, parties first commit to
their private inputs once and for all. Later, an encryptor can produce a ciphertext so that any
party with a committed input that satisfies the relation (specified at encryption time) can decrypt.
More accurately, who can decrypt is any party with a NIZK showing that the committed input
satisfies the relation. The authors construct this primitive based on standard assumptions in
asymmetric bilinear groups.

In our work, we generalize the encryption notion in [29], formalize it as cWE and finally
use it to construct ECW. While the original construction of [29] fits the definition of cWE, we
observe it is an overkill for our application. Specifically our setting does not require NIZKs
to be involved in encryption/decryption. We instead give more efficient instantiations based
on two-party Multi-Sender Non-Interactive Secure Computation (MS-NISC) protocols and
Oblivious Transfer plus Garbled Circuits.

Encryption to the Future (EtF). The general notion of EtF is significantly harder to realize
than ECW (as we show in Section 5.8). Below we discuss natural ideas to obtain EtF. They can
be seen as illustrating two extremes where our approach (Section 5.7) lies in the middle.

• Non-Interactive—Using Witness Encryption [98]: One trivial approach to realize EtF is to
use full-fledged general Witness Encryption [98] (WE) for the arithmetic relationR being
the lottery predicate such that the party who holds a winning secret key sk can decrypt
the ciphertext. However, constructing a general witness encryption scheme [98] which
we can instantiate reliably is still an open problem. Existing constructions rely on very
strong assumptions such as multilinear maps, indistinguishability obfuscation or other
complexity theoretical conjectures [17]. The challenges in applying this straightforward
solution are not surprising given our result showing that EtF implies a flavor of WE.

• Interactive—Multiple Committees and Continuous Executions of ECW: A simple way to
achieve an interactive version of EtF is to first encrypt secret shares of a message towards
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members of a committee that then re-share their secrets towards members of a future
anonymous committee via an invocation of ECW (in our instantiations or those in [33]
and [103]). This is essentially the solution proposed in CaBKaS [33] where committees
interact in order to carry a secret (on the blockchain) into the future. Notice that, for a fixed
security parameter and corruption ratio, the communication complexity of the protocol
executed by the committee in this solution depends on the plaintext message length. On
the other hand, for a fixed security parameter and corruption ratio, the communication
complexity of our committee-based transformation from ECW to EtF is constant.

Other works. Using blockchains in order to construct non-interactive primitives with game-
based security has been previously considered in [110]. Other approaches for transferring secret
state to future committees have been proposed in [112], although anonymity is not a concern
in this setting. On the other hand, using anonymity to overcome adaptive corruption has been
proposed in [95], although this work considers anonymous channels among a fixed set of parties.

5.2 Preliminaries

5.2.1 Proof-of-Stake (PoS) Blockchains
In this work we rely on PoS-based blockchain protocols. In such a protocol, each participant
is associated with some stake in the system. A process called leader election encapsulates a
lottery mechanism that ensures (of all eligible parties) each party succeeds in generating the next
block with probability proportional to its stake in the system. In order to formally argue about
executions of such protocols, we depart from the framework presented in [110] which, in turn,
builds on the analysis done in [96] and [142]. We invite the reader to re-visit the abstraction used
in [110]. We present a summary of the framework in the full version [49] and discuss below
the main properties we will use in the remainder of this paper. Moreover, we note that in [110]
it is proven that there exist PoS blockchain protocols with the properties described below, e.g.
Ouroboros Praos [73].

Blockchain Structure.

A genesis blockB0 = {(Sig.pk1, aux1, stake1), . . . , (Sig.pkn, auxn, staken), aux} associates each
party Pi to a signature scheme public key Sig.pki, an amount of stake stakei and auxiliary
information auxi (i.e. any other relevant information required by the blockchain protocol, such
as verifiable random function public keys). A blockchain B relative to a genesis block B0 is a
sequence of blocks B1, . . . , Bn associated with a strictly increasing sequence of slots sl1, . . . , slm
such thatBi = (slj, H(Bi−1), d, aux)). Here, slj indicates the time slot thatBi occupies, H(Bi−1)
is a collision resistant hash of the previous block, d is data and aux is auxiliary information
required by the blockchain protocol (e.g. a proof that the block is valid for slot slj). We denote by
B⌈ℓ the chain (sequence of blocks) B where the last ℓ blocks have been removed and if ℓ ≥ |B|
then B⌈ℓ = ϵ. Also, if B1 is a prefix of B2 we write B1 ⪯ B2. Each party participating in
the protocol has public identity Pi and most messages will be a transaction of the following
form: m = (Pi, Pj, q, aux) where Pi transfers q coins to Pj along with some optional, auxiliary
information aux.
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Blockchain Setup and Key Knowledge.

As in [73], we assume that the genesis block is generated by an initialization functionality
FINIT that registers all parties’ keys. Moreover, we assume that primitives specified in separate
functionalities in [73] as incorporated into FINIT. FINIT is executed by the environment Z as
defined below and is parameterized by a stake distribution associating each party Pi to an initial
stake stakei. Upon being activated by Pi for the first time, FINIT generates a signature key pair
Sig.ski, Sig.pki, auxiliary information auxi and a lottery witness skL,i, which will be defined
as part of the lottery predicate in Section 5.2.1, sending (Sig.ski, Sig.pki, auxi, skL,i, stakei) to
Pi as response. After all parties have activated FINIT, it responds to requests for a genesis
block by providing B0 = {(Sig.pk1, aux1, stake1), . . . , (Sig.pkn, auxn, staken), aux}, where aux
is generated according to the underlying blockchain consensus protocol.

Since FINIT generates keys for all parties, we capture the fact that even corrupted parties have
registered public keys and auxiliary information such that they know the corresponding secret
keys. Moreover, when our EtF constructions are used as part of more complex protocols, a
simulator executing the EtF and its underlying blockchain with the adversary will be able to
predict which ciphertexts can be decrypted by the adversary by simulating FINIT and learning
these keys. This fact will be important when arguing the security of protocols that use our notion
of EtF.

Evolving Blockchains.

In order to define an EtF scheme, some concept of future needs to be established. In particular
we want to make sure that the initial chain B has “correctly” evolved into the final chain B̃.
Otherwise, the adversary can easily simulate a blockchain where it wins a future lottery and finds
itself with the ability to decrypt. Fortunately, the Distinguishable Forking property provides
just that (see [110] for more details). A sufficiently long chain in an honest execution can be
distinguished from a fork generated by the adversary by looking at the combined amount of
stake proven in such a sequence of blocks. We encapsulate this property in a predicate called
evolved(·, ·). First, let ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol
with validity predicate V and where the (α, β, ℓ1, ℓ2)-distinguishable forking property holds.
And let B← GetRecords(1λ, st) and B̃← GetRecords(1λ, s̃t).

Definition 5.2.1 (Evolved Predicate). An evolved predicate is a polynomial time function evolved
that takes as input blockchains B and B̃

evolved(B, B̃) ∈ {0, 1}

It outputs 1 iff B = B̃ or the following holds (i) V (B) = V (B̃) = 1; (ii) B and B̃ are
consistent i.e. B⌈κ ⪯ B̃ where κ is the common prefix parameter; (iii) Let ℓ′ = |B̃| − |B| then it
holds that ℓ′ ≥ ℓ1 + ℓ2 and u-stakefrac(B̃, ℓ′ − ℓ1) > β.

Blockchain Lotteries.

Earlier we mentioned the concept of leader election in PoS-based blockchain protocols. In this
kind of lottery any party can win the right to become a slot leader with a probability proportional
to its relative stake in the system. Usually, the lottery winner wins the right to propose a new
block for the chain, introduce new randomness to the system or become a part of a committee
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that carries out some computation. In our encryption scheme we take advantage of this inherent
lottery mechanism.

Independent Lotteries. In some applications it is useful to conduct multiple independent
lotteries for the same slot sl. Therefore we associate each slot with a set of roles R1, . . . ,Rn.
Depending on the lottery mechanism, each pair (sl,Ri) may yield zero, one or multiple winners.
Often, a party can locally compute if it, in fact, is the lottery winner for a given role and the
evaluation procedure may equip the party with a proof for others to verify. The below definition
details what it means for a party to win a lottery.

Definition 5.2.2 (Lottery Predicate). A lottery predicate is a polynomial time function lottery
that takes as input a blockchain B, a slot sl, a role R and a lottery witness skL,i and outputs 1
if and only if the party owning skL,i won the lottery for the role R in slot sl with respect to the
blockchain B.
Formally, we write

lottery(B, sl,R, skL,i) ∈ {0, 1}

It is natural to establish the set of lottery winning keysWB,sl,R for parameters (B, sl,R). This
is the set of eligible keys satisfying the lottery predicate.

5.2.2 Commitment Schemes
We refer the reader to Section 3.2.3 for the definition of commitment schemes. In our construction
of ECW from cWE (Section 5.5.1), we require our commitments to satisfy an additional property
which allows to extract message and randomness of a commitment. In particular we assume that
our setup outputs both a commitment key and a trapdoor td and that there exists an algorithm Ext
such thatExt(td, cm) outputs (s, ρ) such that cm = Commitck(s; ρ). We remark we can generically
obtain this property by attaching to the commitment a NIZK argument of knowledge that shows
knowledge of opening, i.e., for the relationRopn(cmi; (s, ρ)) ⇐⇒ cmi = Commitck(s; ρ).

5.2.3 Oblivious Transfer
A 2-round oblivious transfer (OT) protocol between a receiver R and a sender S consists of three
polynomial-time algorithms ΠOT = (ΠR

OT,Π
S
OT,Π

O
OT):

mR ← ΠR
OT(b; r

R). In the first round, the receiver R on input b ∈ {0, 1} and random tape
rR ∈ {0, 1}poly(λ)(λ) generates the OT first message mR.

mS ← ΠS
OT(m

R, (x0, x1); rS). In the second round, the sender S on input (x0, x1), where
xl ∈ {0, 1}poly(λ)(λ) for l ∈ {0, 1}, generates the second message mS using random tape
rS ∈ {0, 1}poly(λ)(λ).

x← ΠO
OT(m

S, b, rR). R computes the output x = ΠO
OT(m

S, b, rR).

We require an OT protocol to securely implement the ideal functionality FOT given in Fig. 5.2 in
the presence of malicious adversaries.
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Choose. On input (receive, sid, b) from R , where b ∈ {0, 1}, if no messages of the form
(receive, sid, b) is stored, store (receive, sid, b) and send (receive, sid) to S.

Transfer. On input (send, sid, x0, x1) from S, with x0, x1 ∈ {0, 1}k, if no messages of
the form (send, sid, x0, x1) is stored and a message of the form (receive, sid, b) is
present, send (sent, sid, xb) to R.

Figure 5.2: The ideal functionality FOT for oblivious transfer

5.2.4 Garbled Circuit
Garbled circuit introduced by [156] is a cryptographic technique that enables two-party secure
computation in which two parties do not trust each other and want to jointly evaluate a function
over their private inputs. The following definition is from the garbling schemes abstraction
introduced by Bellare et al. in [21].

Definition 5.2.3 (Garbling Scheme). Let C = {Cλ}λ∈N be a polynomial-size circuit class. A
garbled circuit scheme GC for C consists of four polynomial-time algorithms GC = (Garble,
Encode,Eval,Decode):

(C, e, d)← Garble(1λ, C): On input a boolean circuit C ∈ Cλ, outputs (C, e, d), where C is a
garbled circuit, e is encoding information, and d is decoding information.

X ← Encode(e, x): On input e and x, where x is a suitable input for C, outputs a garbled input
X .

Y = Eval(C, X): On input (C, X) as above, outputs a garbled output Y .

y ← Decode(d, Y ): On input (d, Y ) as above, outputs a plain output y.

For our construction, we are interested in garbling schemes with the following properties.

Correctness. For any security parameter λ ∈ N, for any circuit C ∈ Cλ, for (C, e, d) ←
Garble(1λ, C), and for all suitable input x:

Decode(d,Eval(C,Encode(e, x))) = C(x)

Authenticity. For all circuits C : {0, 1}n → {0, 1}, inputs x ∈ {0, 1}n, where n = poly(λ)(λ),
and for all PPT adversaries A,

Pr

[
Ŷ ̸= Eval(C, X) ∧
Decode(d, Ŷ ) ̸= ⊥

:
(C, e, d)← Garble(1λ, C)

X = Encode(e, x); Ŷ ← A(C, x,C, X)

]
≈λ 0

Verifiability. There exists a PPT algorithm Verify such that for all circuits C : {0, 1}poly(λ) →
{0, 1},

Pr
[
Verify(C,C, e) = 1 : (C, e, d)← Garble(1λ, C)

]
= 1
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5.2.5 (Threshold) Identity Based Encryption
In an IBE scheme, users can encrypt simply with respect to an identity (rather than a public
key). Given a master secret key, an IBE can generate secret keys that allows to open to specific
identities. In our construction of EtF (Section 5.7.1) we rely on a threshold variant of IBE
(TIBE) where no single party in the system holds the master secret key. Instead, parties in a
committee hold a partial master secret key mski. Like other threshold protocols, threshold IBE
can be generically obtained by “lifting” an IBE through a secret sharing with homomorphic
properties (see for example [140]).

We recall the definition of an identity-based encryption (IBE) scheme [37]. An IBE scheme
ΠIBE consists of the following algorithms:

Setup(1λ). The setup algorithm takes as input a security parameter λ and returns a master key
msk together with some publicly known system parameters sp including a master public
key mpk, message spaceM and ciphertext space C. We assume that all algorithms takes
sp as input implicitly.

IDKeygen(msk, ID). The identity key-generation algorithm takes as input msk and an identity
ID ∈ {0, 1}∗, and returns a decryption key skID for ID.

Enc(ID,m). The encryption algorithm takes as input an identity string ID ∈ {0, 1}∗ and m ∈M.
It returns a ciphertext ct ∈ C.

Dec(ct, skID). The decryption algorithm takes as input ct ∈ C and a decryption key skID. It
returns m ∈M.

Correctness. An IBE scheme ΠIBE should satisfy the standard correctness property, namely for
skID ← IDKeygen(msk, ID) and for any m ∈M, we must have:

Dec(Enc(ID,m), skID) = m.

where (mpk,msk)← Setup(1λ)

Security. We use adaptive-identity security [37]. After the challenger runs the setup algorithm,
the adversary has access to an oracle Omsk that on input any id, returns skid. A may query
the oracle on arbitrary identities of its choice even before selecting the messages m0,m1.
More formally, we say that ΠIBE is secure if any PPT adversary A has only negligibly
greater than 1/2 probability of correctly guessing the bit b in the following game:

1. The challenger runs Setup and outputs sp to A.

2. A may query the oracle Omsk that on any input id returns skid.

3. A outputs a target identity id∗ and two equal-size messages m0,m1 ∈M.

4. The challenger selects a random bit b and outputs c∗ ← Enc(id∗,mb) to A.

5. A may continue to query Omsk on any input id ̸= id∗.

6. A outputs b′.

where Omsk(ID) outputs IDKeygen(msk, ID).
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Threshold IBE.

This is a threshold variant of IBE with the following syntax:

ΠTIBE.Setup(1
λ, n, k)→ (sp, vk,msk) : It outputs some public system parameters sp (including

mpk), verification key vk, and vector of master secret key shares msk = (msk1, . . . ,mskn)
for n with threshold k. We assume that all algorithms takes sp as input implicitly.

ΠTIBE.ShareKG(i,mski, ID)→ θ = (i, θ̂) : It outputs a private key share θ = (i, θ̂) for ID given
a share of the master secret key.

ΠTIBE.ShareVerify(vk, ID, θ)→ 0/1 : It takes as input the verification key vk, an identity ID,
and a share of master secret key θ, and outputs 0 or 1.

ΠTIBE.Combine(vk, ID,θ)→ skID : It combines the shares θ = (θ1, . . . , θk) to produce a private
key skID or ⊥.

ΠTIBE.Enc(ID,m)→ ct : It encrypts message m for identity ID and outputs a ciphertext ct.

ΠTIBE.Dec(ID, skID, ct)→ m : It decrypts the ciphertext ct given a private key skID for identity
ID.

Correctness. A TIBE scheme ΠTIBE should satisfy two correctness properties:

1. For any identity ID, if θ = ΠTIBE.ShareKG(i,mski, ID) for mski ∈ msk, then we have
ΠTIBE.ShareVerify(vk, ID, θ) = 1.

2. For any ID, if θ = {θ1, . . . , θk} where θi = ΠTIBE.ShareKG(i,mski, ID), and skID =
ΠTIBE.Combine(vk, ID,θ), then for any m ∈ M and ct = ΠTIBE.Enc(ID,m) we have
ΠTIBE.Dec(ID, skID, ct) = m.

Constructing TIBE from IBE and Homomorphic Secret Sharing.

Assume a secure IBE = (Setup, IDKeygen,Enc,Dec). We can transform it into a threshold IBE
using homomorphic secret sharing algorithms (Share,EvalShare,Combine). A homomorphic
secret sharing scheme is a secret sharing scheme with an extra property: given a shared secret, it
allows to compute a share of a function of the secret on it. It has the following syntax (which we
specialize for the IBE setting):

• Share(msk, k, n)→ (msk1, . . . ,mskn) shares the secret.

• EvalShare(mski, f)→ yi obtains a share for f(msk) where f is a function.

• Combine((yi)i∈T )→ y∗ where T is a set with size above threshold.

We assume all the algorithms above take as input the master public-key for simplicity. The
correctness of the homomorphic scheme requires that running yi ← EvalShare(mski, f) on mski
output of Share and then running Combine on (a large enough set of) the yi-s produces the same
output as f(msk). We also require that Combine can reconstruct msk from a large enough set of
the mski-s.

The construction for threshold IBE is now straightforward:
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• at setup time, we produce shares msk1, . . . ,mskn of the master secret key using the Share
algorithm on the master secret key output of Setup.

• encryption is syntactically and functionally the same in both cases.

• to produce a partial secret-key for a certain id, we just run skID
i ← EvalShare(mski,

IBE.IDKeygen(mpk, ·, ID)).

• for decryption, given enough shares for an ID ID, we run on them algorithm Combine to
obtain skID; we then simply run IBE.Dec.

Threshold IBE security. If the homomorphic secret sharing supports up to a threshold k, then
we obtain analogous properties for the threshold IBE construction. In particular the threshold
IBE satisfies the following simulation properties for any n and threshold k supported by the
homomorphic secret sharing scheme3.

Master secret-key share simulation. For any PPT adversaryA there exists a simulator Simmsk

such that the following two distributions are indistinguishable.

{(mpk, (mski)i∈Scorr) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈n ← Share(msk, n, k)} ≈
{(mpk, (mski)i∈Scorr) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈Scorr ← Simmsk(mpk, Scorr, n, k)}

Key-generation simulation. For any PPT adversary there exists a simulator Simkg such that
the following two distributions are indistinguishable.

{(mpk, (skID
i )i∈[n]) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈n ← Share(msk, n, k);

ID← A(mpk, (mski)i∈Scorr);

skID
i ← EvalShare(mski, ID) for i ∈ [n]} ≈

{(mpk, (skID
i )i∈[n]) :(mpk,msk)← IBE.Setup(1λ);

Scorr ← A(mpk); (mski)i∈n ← Share(msk, n, k);

ID← A(mpk, (mski)i∈Scorr);

(skID
i )i∈[n] ← Simkg(mpk, (mski)i∈Scorr , ID)}

Robustness of TIBE. We assume a robust threshold IBE scheme, where we can verify that
each of the ID-specific shares are authenticated, i.e. they have been produced by a party with the
related master secret key share. This property can be obtained by assuming an underlying secret
sharing scheme which is itself robust. This in turn can be obtained by attaching a NIZK or a
homomorphic signature to the share.

3The security of this type of construction is proven for example in [140] to which we defer the reader for details.
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TIBE with Proactive Secret Sharing. We assume our TIBE to allow for the shares of the
master secret keys to be reshared among the committee members which evolve through time.
With this goal in mind we can consider a proactive secret sharing scheme which includes a
handover (each committee member can reshare its share) and reconstruction stage (committee
members in a new epoch can reconstruct their secret from the output of the handover). We
can directly extend a TIBE with such syntax. The resulting scheme should provide the same
simulation properties as the ones described above for the non proactive case.

5.3 Modelling EtF
In this section, we present a model for encryption to the future winner of a lottery. In order to
argue about a notion of future, we use the blocks of an underlying blockchain ledger and their
relative positions in the chain to specify points in time. Intuitively, our notion allows for creating
ciphertexts that can only be decrypted by a party that is selected to perform a certain role R at a
future slot sl according to a lottery scheme associated with a blockchain protocol. The winner
of the lottery at a point in the future with respect to a blockchain state B̃ is determined by the
lottery predicate defined in Section 5.2.1, i.e. the winner is the holder of a lottery secret key sk
such that lottery(B̃, sl,R, sk) = 1. However, notice that the winner might only be determined by
a blockchain state produced in the future as a result of the blockchain protocol execution. This
makes it necessary for the ciphertext to encode an initial state B of the blockchain that allows for
verifying that a future state B̃ (presented at the time of decryption) has indeed been produced as
a result of correct protocol execution. This requirement is captured by the evolving blockchain
predicate defined in Section 5.2.1, i.e. evolved(B, B̃) = 1 iff B̃ is obtained as a future state of
executing the blockchain protocol departing from B.

Definition 5.3.1 (Encryption to the Future). A pair of PPT algorithms E = (Enc,Dec) in the
the context of a blockchain ΓV is an EtF-scheme with evolved predicate evolved and a lottery
predicate lottery. The algorithms work as follows.

Encryption. ct ← Enc(B, sl,R,m) takes as input an initial blockchain B, a slot sl, a role R
and a message m. It outputs a ciphertext ct - an encryption to the future.

Decryption. m/⊥ ← Dec(B̃, ct, sk) takes as input a blockchain state B̃, a ciphertext ct and a
secret key sk and outputs the original message m or ⊥.

An EtF must satisfy the following properties:

Correctness. An EtF-scheme is said to be correct if for honest parties i and j, there exists a
negligible function µ such that for all sk, sl,R,m:∣∣∣∣∣∣∣∣∣∣

Pr


view← EXECΓ(A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
ct← Enc(B, sl,R,m)

evolved(B, B̃) = 1

:
lottery(B̃, sl,R, sk) = 0

∨ Dec(B̃, ct, sk) = m

− 1

∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

Security. We establish a game between a challenger C and an adversary A. In Section 5.2.1
we describe how A and Z execute a blockchain protocol. In addition, we now let the
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viewr ← EXECΓ
r (A,Z, 1λ) ▷ A executes Γ with Z until round r

(B, sl,R,m0,m1)← A(viewr
A) ▷ A outputs challenge parameters

b←$ {0, 1}
ct← Enc(B, sl,R,mb)
st← A(viewr

A, ct) ▷ A receives challenge ct
viewr̃ ← EXECΓ

(viewr,r̃)(A,Z, 1λ) ▷ Execute from viewr until round r̃

(B̃, b′)← A(viewr̃
A, st)

if evolved(B, B̃) = 1 then ▷ B̃ is a valid evolution of B
if skA

L,j /∈ WB̃,sl,R then ▷ A does not win role R
return b⊕ b′

end if
end if
return b̂←$ {0, 1}

Figure 5.3: GameIND-CPA
Γ,A,Z,E

adversary interact with the challenger in a game GameIND-CPA
Γ,A,Z,E described in Fig. 5.3. The

game can be summarized as follows:

1. A executes the blockchain protocol Γ together with Z and at some round r chooses
a blockchain B, a role R for the slot sl and two messages m0 and m1 and sends it all
to C.

2. C chooses a random bit b and encrypts the message mb with the parameters it received
and sends ct to A.

3. A continues to execute the blockchain until some round r̃ where the blockchain B̃ is
obtained and A outputs a bit b′.

If the adversary is a lottery winner for the challenge role R in slot sl, the game outputs
a random bit. If the adversary is not a lottery winner for the challenge role R in slot sl,
the game outputs b ⊕ b′. The reason for outputting a random guess in the game when
the challenge role is corrupted is as follows. Normally the output of the IND-CPA game
is b⊕ b′ and we require it to be 1 with probability 1/2. This models that the guess b′ is
independent of b. This, of course, cannot be the case when the challenge role is corrupted.
We therefore output a random guess in these cases. After this, any bias of the output away
from 1/2 still comes from b′ being dependent on b.

Definition 5.3.2 (IND-CPA Secure EtF). An EtF-scheme E = (Enc,Dec) in the context of a
blockchain protocol Γ executed by PPT machines A and Z is said to be IND-CPA secure if, for
any A and Z , there exists a negligible function µ such that for λ ∈ N:∣∣2 · Pr

[
GameIND-CPA

Γ,A,Z,E = 1
]
− 1
∣∣ ≤ µ(λ)
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5.3.1 ECW as a Special Case of EtF
In this section we focus on a special class of EtF. We call schemes in this class ECW schemes.
ECW is particularly interesting since the underlying lottery is always conducted with respect to
the current blockchain state. This has the following consequences

1. B = B̃ means that evolved(B, B̃) = 1 is trivially true.

2. The winner of role R in slot sl is already defined in B.

It is easy to see that this kind of EtF scheme is simpler to realize since there is no need for
checking if the blockchain has “correctly” evolved. Furthermore, all lottery parameters like
stake distribution and randomness extracted from the blockchain are static. Thus, an adversary
has no way to move stake between accounts in order to increase its chance of winning the lottery.
Note that, when using an ECW scheme, the lottery winner is already decided at encryption time.
In other words, there is no delay and the moment a ciphertext is produced the receiver is chosen.

5.4 Witness Encryption over Commitments (cWE)
Here, we describe witness encryption over commitments that is a relaxed notion of witness
encryption. In witness encryption parties encrypt to a public input for some NP statement. In
cWE we have two phases: first parties provide a (honestly generated) commitment cm of their
private input s. Later, anybody can encrypt to a public input for an NP statement which also
guarantees correct opening of the commitment. Importantly, in applications, the first message in
our model can be reused for many different invocations.
Remark 5.4.1 (Comparing cWE and WE). We observe that cWE is weaker than standard
WE because of its deterministic flavor. In standard WE we encrypt without having any
“pointer” to an alleged witness, but in cWE it requires the witness to be implicitly known at
encryption time through the commitment (to which it is bound). That is why—as for the
weak flavors of witness encryption in [29]—we believe it would be misleading to just talk
about WE. This is true in particular since we show cWE can be constructed from standard
assumptions such as oblivious transfer and garbled circuits (Section 5.4.2), whereas constructions
of WE from standard assumptions are still an open problem or require strong primitives like
indistinguishability obfuscation. Finally we stress a difference with the trivial “interactive” WE
proposed in [98] (Section 1.3): cWE is still non-interactive after producing a once-and-for-all
reusable commitment.

5.4.1 Definition
The type of relations we consider are of the following form: a statement x = (cm, C, y) and a
witness w = (s, ρ) are in the relation (i.e., (x,w) ∈ R) iff “cm commits to some secret value s
using randomness ρ, and C(s) = y”. Here, C is a circuit in some circuit class C and y is the
expected output of the function.
Formally, we define witness encryption over commitments as follows:

Definition 5.4.2 (Witness encryption over commitments). LetCom = (Setup,Commit) be a non-
interactive commitment scheme. A cWE-scheme for witness encryption over commitments with
circuit class C and commitment schemeCom consists of a pair of algorithmsΠcWE = (Enc,Dec):
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Encryption phase. ct ← Enc(ck, x,m) on input a commitment key ck, a statement x =
(cm, C, y) such that C ∈ C, and a message m ∈ {0, 1}∗, generates a ciphertext ct.

Decryption phase. m/⊥ ← Dec(ck, ct,w) on input a commitment key ck, a ciphertext ct, and
a witness w, returns a message m or ⊥.

A cWE should satisfy correctness and semantic security as defined below.

(Perfect) Correctness. An honest prover with a statement x = (cm, C, y) and witnessw = (s, ρ)
such that cm = Commitck(s; ρ) and C(s) = y can always decrypt with overwhelming
probability. More precisely, a cWE with circuit class C and commitment scheme Com has
perfect correctness if for all λ ∈ N, C ∈ C, ck ∈ Range(Com.Setup), s ∈ Sm, randomness
ρ ∈ Sr, commitment cm← Com.Commitck(s; ρ), and bit message m ∈ {0, 1}∗, it holds
that

Pr
[
ct← Enc(ck, (cm, C, C(s)),m);m′ ← Dec(ck, ct, (s, ρ)) : m = m′] = 1

(Weak) Semantic Security. Intuitively, encrypting with respect to a false statement (with honest
commitment) produces indistinguishable ciphertexts. Formally, there exists a negligible
function µ such that for all λ ∈ N, all auxiliary strings aux and all PPT adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣

2 · Pr


ck← Com.Setup(1λ)

(st, s, ρ, C, y,m0,m1)← A(ck, aux)
cm← Com.Commitck(s; ρ); b←$ {0, 1}

ct← Enc(ck, (cm, C, y),mb)

ct := ⊥ if C(s) = y, C ̸∈ C or |m0| ≠ |m1|

: A(st, ct) = b

− 1

∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

To show the construction of ECW from cWE, we need a stronger notion of semantic security
where the adversary additionally gets to see ciphertexts of the challenge message under true
statements with unknown to A witnesses. Below we formalize this property and show that weak
semantic security together with hiding of the commitment imply strong semantic security.

Strong Semantic Security.

Informally, this property states that encrypting a message m with respect to a false statement
x = (cm, C, y) produces indistinguishable ciphertexts to an adversary A who knows the
commitment opening, even if A gets to see encryptions of m under other (possibly true)
statements xi = (cmi, C, y) but with unknown commitment opening. Formally, there exists a
negligible function µ such that for all λ ∈ N, all auxiliary strings aux and all PPT adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 · Pr



ck← Com.Setup(1λ)

(st, s, ρ, C, y,m0,m1)← AOcom(·)(ck, aux)

cm← Com.Commitck(s; ρ); b←$ {0, 1}
ct← Enc(ck, x = (cm, C, y),mb)

∀cmi ∈ Q : cti ← Enc(ck, xi = (cmi, C, y),mb)

ct := {ct} ∪ {cti}i∈[|Q|]

ct := ⊥ if C(s) = y or C ̸∈ C

: A(st, ct) = b


− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)
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where Ocom(·) is a commitment oracle parametrized by ck and defined as follows: on input si,
computes and returns cmi ← Com.Commitck(si; ρi) for some randomness ρi, and stores cmi in
Q.

Lemma 5.4.3. Let Com = (Setup,Commit) be a non-interactive commitment scheme. Let ΠcWE

be a witness encryption over commitments for some circuit class C over commitment scheme
Com. If ΠcWE has weak semantic security, and Com has hiding property, then ΠcWE has strong
semantic security.

Proof. Assume A is a PPT adversary against strong semantic security. We construct an efficient
adversary B that breaks weak semantic security of ΠcWE with non-negligible advantage.

First, B runs A with the commitment key ck received from the challenger. B then
simulates the oracle Ocom for A in the natural way. Namely, for any input si, it outputs
cmi ← Com.Commitck(si; ρi) for some randomness ρi ∈ Sr, and stores cmi in Q. Upon
receiving a tuple (st, s, ρ, C, y,m0,m1) from A, B forwards the tuple to the challenger. Upon
receiving the challenge ciphertext ct (for the encryption of mb) from the challenger, B generates
a ciphertext cti for each commitment cmi ∈ Q. To do so, B selects c←$ {0, 1} and computes
cti ← Enc(ck, (cmi, C, y),mc) for any cmi ∈ Q. Next, B checks whether C(s) ̸= y, and if so
forwards ct := {ct} ∪ {cti}i∈[|Q|] to A. Otherwise, B outputs a random guess b′ ←$ {0, 1} for
the bit b. Finally, upon receiving a guess b′ from A, B forwards b′ to the challenger. It is easy to
see that if c = b, then B is perfectly simulating strong semantic security game for A.

To prove the lemma, we define |Q| + 2 hybrid distributions such that the first hybrid
corresponds to the strong semantic security and the last hybrid corresponds to the above game
simulated by B. We conclude the proof by showing that an adversary with non-negligible
advantage in the first hybrid implies the existence of an efficient adversary with non-negligible
advantage in the last hybrid.
Hybrid 0. This is the strong semantic security game. Namely,

1. The adversary A receives the commitment key ck, where ck← Com.Setup(1λ).

2. A adaptively makes commitment queries for messages si, and for each receives cmi ←
Com.Commitck(si; ρi).

3. After some number of queries listed inQ,A outputs a tuple (st, s, ρ, C, y,m0,m1) for which
C(s) ̸= y. The challenger samples a random bit b ←$ {0, 1}, generates encryptions of
mb via ct← Enc(ck, (cm, C, y),mb), and cti ← Enc(ck, (cmi, C, y),mb) for all cmi ∈ Q,
and sends ct := {ct} ∪ {cti}i∈[|Q|] to A as the challenge ciphertext.

4. Eventually, A outputs a guess b′ for the bit b.

Hybrids k = 1, . . . , |Q|. Same as the previous hybrid, except the first k ciphertexts {cti}i∈[k]
are computed with respect to cmi being a commitment of s. Namely,

1. Identical to Hybrid 0.

2. Identical to Hybrid 0.

3. The challenger samples a random bit b ←$ {0, 1}, generates encryptions of mb via
ct← Enc(ck, (cm, C, y),mb), and cti ← Enc(ck, (cmi, C, y),mb) (i = 1, . . . , |Q|) com-
puted as before, except in the first k ciphertexts {cti}i∈[k], the commitment cmi is computed
as cmi ← Com.Commitck(s; ρi) for some randomness ρi ∈ Sr.
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4. Identical to Hybrid 0.

Hybrid k = |Q| + 1. Same as the previous hybrid, except the ciphertexts {cti}i∈[|Q|] are
encryptions of mc for a uniformly random c←$ {0, 1}. Namely,

1. Identical to Hybrid |Q|.

2. Identical to Hybrid |Q|.

3. The challenger samples random bits b ←$ {0, 1} and c ←$ {0, 1}, and generates
encryptions of mb and mc respectively via ct← Enc(ck, (cm, C, y),mb), and cti ←
Enc(ck, (cmi, C, y),mc) (i = 1, . . . , |Q|).

4. Identical to Hybrid |Q|.

For k = 0, . . . , |Q|+ 1, denote by advi the advantage ofA in guessing the bit b in Hybrid i. It is
easy to see that for any 0 ≤ i < |Q|, we have |advi − advi+1| ≤ negl(λ)(λ), where negl(λ)(λ)
is some negligible function. This is because the distributions Di and Di+1 respectively defined
by the hybrids i and i + 1 only differ in their (i + 1)-th ciphertext, which is the encryption
of mb under a commitment of si+1 for Di and encryption of mb under a commitment of s for
Di+1. Thus, the difference |advi − advi+1| is exactly equal to the adversary’s advantage in the
hiding experiment. By the hiding property of the commitment scheme, it thus follows that this
difference is negligible.
Furthermore, observe that in the last hybrid, c = b with probability 1/2 and hence we have
that with probability at least 1/2, the two distributions D|Q| and D|Q|+1 are identical. This,
together with the fact that D0 and D|Q| have a negligible difference imply that having an efficient
adversary with non-negligible advantage ε against hybrid 0 results in a non-negligible advantage
ε/2 against hybrid |Q|+ 1. This completes the proof of the lemma.

5.4.2 Constructions of cWE
From Multi-Sender 2P-NISC [8].

A cWE scheme can be constructed from protocols for Multi-Sender (reusable) Non-Interactive
Secure Computation (MS-NISC) [8]. In such protocols, there is a receiver R with input x who
first broadcasts an encoding of its input, and then later every sender Si with input yi can send a
single message to R that conveys only f(x, yi). This is done while preserving privacy of inputs
and correctness of output. The ideal functionality of MS-NISC as presented in [8] is depicted
in Fig. 5.4.

In Fig. 5.5, we show how to construct cWE by having black-box access to FMS-NISC. The
main idea is that a party acts as a receiver and sends the first message in MS-NISC containing its
witness w in order to provide a “commitment” to that witness. Later on, any other party can use
this “commitment” to create a cWE ciphertext by sending an encryption of the message and
acting as the sender of the MS-NISC to provide a second message that allows for evaluating a
function f(w, y) that outputs a decryption key iff the witness w satisfies a given relation. Note
that the ideal functionalities used in the construction are stated for clarity and is not compatible
with our game-based notion of security for cWE. By assuming a concrete secure realization of
the above functionalities, one can argue about security using the corresponding simulator and
use that to extract witnesses from commitments and make the proof go through.
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Assume f(⊥, ·) = f(·,⊥) = ⊥.

• Initialize a list, L, of pairs of strings.

• Upon receiving a message (input, x) from R, store x and continue.

1. Upon receiving message (input, y) from Si, insert the pair (Si, y) into
L. If R is corrupted send (Si, f(x, y)) to the adversary. Otherwise, send
(messageReceived, Si) to R.

2. Upon receiving a message getOutputs from R, send {(Si, f(x, y))}(Si,y)∈L to
R.

Figure 5.4: MS-NISC Functionality FMS-NISC

Initialization: Initialize FMS-NISC by instantiating a list L of pairs of strings.

Commit: R proceeds as follows:

• Commits to its witness w by calling FMS-NISC on input (input,w).

Encryption: S proceeds as follows:

• Generates a key k of length |m| and encrypts the message m as ct← k ⊕m.
• Calls FMS-NISC on input (x, k) and sends ct directly to R.

Decryption: R receives (messageReceived, S) from FMS-NISC and ct from S and
proceeds as follows:

• Calls FMS-NISC on input getOutputs.
• Upon receiving k from FMS-NISC, outputs m← k ⊕ ct.

Figure 5.5: Construction of cWE based on MS-NISC

We observe that the above construction actually yields a stronger notion of cWE where
the statement x is private which is not a requirement in our setting. This asymmetry between
sender and receiver privacy was also observed by others [122] and it opens the door for efficient
constructions using oblivious transfer (OT) and privacy-free garbled circuits as described in
[157].

From Garbled Circuits and Oblivious Transfer.

Instead of relying on the full MS-NISC functionality in a black-box way, we now do a careful
analysis resulting in a protocol which uses only the properties of MS-NISC needed to obtain a
protocol that satisfies the definition of cWE.
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We observe that the correctness property in the definition of cWE only requires that a
correctly generated ciphertext can be decrypted by the decryption algorithm. Thus, we expect
the second message of MS-NISC functionality to be generated correctly. In particular, when
looking into the internals of the protocol in [8], we observe that we can construct cWE from
a MS-NISC protocol without the precautions against a malicious sender S. However, we still
want to make sure that we preserve authenticity of the underlying garbled circuit scheme. This
property guarantees that no garbled output can be constructed different from what is dictated by
the function and its inputs. In other words, the only thing a malicious receiver can do with the
garbled circuit is Evaluate it on the committed input. Finally, we observe that privacy of input
is not a requirement for the sender. Thus, we can consider variants of garbled circuit schemes
without privacy guarantees.

Privacy-free Garbled Circuits. One of the most efficient GC schemes in terms of communi-
cation is the scheme by [157] based on a technique called half-gates. Using their technique in
the privacy-free setting results in garbled circuits containing one ciphertext for each AND gate
and no ciphertexts for XOR gates.

cWE from privacy-free GC and OT. We now present an efficient construction of cWE using
only a privacy-free garbled circuit and oblivious transfer.

Let GC = (Garble,Encode,Eval,Decode,Verify) be a garbled circuit with correctness and
authenticity, and ΠOT = (ΠR

OT,Π
S
OT,Π

O
OT) be an oblivious transfer protocol that realizes FOT.

We consider two parties E and D that respectively play the role of the encryptor and the decryptor
in an execution of the cWE scheme. The construction of ΠcWE = (Enc,Dec) with commitment
ΠR

OT for circuit class C is given in Fig. 5.6.

Theorem 5.4.4. Let C be a class of circuits. Let ΠOT be an OT protocol that realizes FOT and
GC be a correct and authentic garbling scheme. The cWE scheme ΠcWE for C in Fig. 5.6 is
correct and semantically secure as defined in Definition 5.4.2.

Proof. (Correctness). Follows directly from the correctness property of the ΠOT and GC.
(Semantic Security). Assume that A is a PPT adversary against semantic security of ΠcWE

such that, for adversarially chosen values (s, ρ, C, y,m0,m1), given an encryption of mb under
statement x = (cm, C, y), where cm = Commit(s; ρ) and y ̸= C(s), A can guess the bit b with
non-negligible advantage. We first observe that by the construction of ΠcWE, A can guess
b correctly only by distinguishing the correct label k1 from random. Informally, given that
C(s) ̸= y, there are only two possible cases in whichA can distinguish k1 from random: either by
the ability to gain knowledge about invalid labels k1−sj

j that do not correspond to A’s committed
value, or by the ability to gain knowledge about k1 directly. We show that a successful adversary
in the first case can be used to break the sender security of ΠOT whereas a successful adversary
in the second case can be exploited to break the the authenticity of GC.

In order to formally prove semantic security, we first define the experiment ExpSS-bA,λ in Fig. 5.7.
We define b′ as the output of ExpSS-bA,λ . Note that ExpSS-bA,λ corresponds to the semantic security
experiment of ΠcWE in Definition 5.4.2, except that b is fixed.

To prove the theorem, let us assume by contradiction that there is an adversary A that breaks
the semantic security of ΠcWE. That is, for a non-negligible function ϵ, we have∣∣Pr[1← ExpSS-0A,λ ]− Pr[1← ExpSS-1A,λ ]

∣∣ ≥ ϵ(λ)
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Primitives: A correct and authentic garbling scheme GC = (Garble,Encode,Eval,Decode),
and a 2-round OT ΠOT = (ΠR

OT,Π
S
OT,Π

O
OT).

Commit: D with secret s ∈ {0, 1}n plays the role of the receiver in n instances of ΠOT and
computes (cm,w) as follows:

• Select ρRj ←$ {0, 1}λ, and compute mR
j ← ΠR

OT(sj; ρ
R
j ) for j ∈ [n].

• Define cm = {mR
j }j∈[n], and w = (s, {ρRj }j∈[n]). Note that w can be seen as an

opening of cm.

Common inputs: A security parameter λ, a circuit C ∈ C, a commitment key ck, and a
statement x = (cm, C, y).
Encryption.: E plays the role of the sender in n instances of ΠOT and computes a ciphertext
ct = (ct1, ct2) as follows:

1. Let Cx be a circuit that realizes the following relation R on x: R(x =
(cm, C, y), (s,d)) = 1 iff (s,d) opens cm and C(s) = y. Compute (C, e, d) ←
Garble(1λ, Cx), where e := {k0

j , k
1
j}j∈[n], and d := (k0, k1) ∈ {0, 1}2|m|.

2. For j ∈ [n], select ρSj ←$ {0, 1}λ, and compute mS
j = ΠS

OT(k
0
j , k

1
j ,m

R
j ; ρ

S
j ).

3. Compute ct1 = k1 ⊕m and ct2 = (C, {mS
j }j∈[n]).

4. Send ct = (ct1, ct2) to D.

Decryption: Given ct = (ct1, ct2) and w = (s, {ρRj }j∈[n]), D proceeds as follows:

1. Parse ct2 as (C, {mS
j }j∈[n]).

2. Execute ksj
j = ΠO

OT(m
S
j , sj, ρ

R
j ) for j ∈ [n], and Y = Eval(C, {ksj

j }j∈[n]).

3. Compute m = Y ⊕ ct1.

Figure 5.6: cWE based on GC and OT

(st, s, ρ, C, y,m0,m1)← A(1λ)
ρ = ρ1|| . . . ||ρn; cm = {mR

j }j∈[n], where mR
j ← ΠR

OT(sj; ρj) ∀j ∈ [n].
x := (cm, C, y); (C, e, d)← Garble(1λ, Cx) where e := {k0

j , k
1
j}j∈[n], and d := (k0, k1).

ρSj ←$ {0, 1}λ; mS
j = ΠS

OT(k
0
j , k

1
j ,m

R
j ; ρ

S
j ) (∀j ∈ [n]).

ct1 = k1 ⊕mb and ct2 = (C, {mS
j }j∈[n]); ct := (ct1, ct2).

ct := ⊥ if C(s) = y or C ̸∈ C or |m0| ≠ |m1|
b′ ← A(st, ct)

Figure 5.7: ExpSS-bA,λ
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We now use a standard hybrid argument and define several games, where the first is ExpSS-0A,λ ,
the last is ExpSS-1A,λ , and the intermediate hybrids are defined as follows:
Hybrid 0 is defined as ExpSS-0A,λ .
Hybrid 1 is the same as Hybrid 0, except that the messages {mS

j }j∈[n] are computed by the OT
simulator i.e., as {mS

j }j∈[n] ← Sim(1λ, {mR
j }j∈[n]).

Hybrid 2 is the same as Hybrid 1, except that ct1 is defined as ct1 := k1 ⊕m1.
Hybrid 3 is defined as ExpSS-1A,λ .

By assumption, A must distinguish some pair of adjacent intermediate hybrids. That is, for
some i ∈ {0, 1, 2}, we must have∣∣Pr[1← HybridiA,λ − Pr[1← Hybridi+1

A,λ]
∣∣ ≥ 1

3
ϵ(λ)

We now analyze all three cases:

• i = 0. Notice that the only difference between Hybrid 0 and Hybrid 1 is that in the former,
the sender’s message {mS

j }j∈[n] is computed by a real sender (World 0), whereas in the
latter, it is computed by the simulator (World 1). Assuming that A can distinguish hybrids
0 and 1, we construct an adversary B against sender security of ΠOT that distinguishes the
two worlds with the same probability. B works as follows:

1. B invokes A(1λ) and obtains (s, ρ, C, y,m0,m1).
2. If |m0| ̸= |m1| or C(s) = y, B aborts; otherwise, it parses ρ = ρ1|| . . . ||ρn and

defines cm = {mR
j }j∈[n], where mR

j ← ΠR
OT(sj; ρj) for j ∈ [n]. Let x = (cm, C, y).

As an environment controlling the OT execution, B provides the input of sender and
receiver to the OT challenger as follows:

– computes a garbling of circuit Cx (as defined in Fig. 5.6) by (C, e, d) ←
Garble(1λ, Cx) and sends the input keys to the OT challenger as the sender’s
input.

– sends s to the OT challenger as the receiver’s choice bits.
3. The OT challenger computes the sender’s message {mS

j }j∈[n] either by invoking a
real sender (World 0), or by invoking the simulator (World 1), and sends it to B.

4. B parses d = (k0, k1), and forwards ct := (ct1, ct2) to the cWE adversary A, where
ct1 = k1 ⊕m0 and ct2 = (C, {mS

j }j∈[n]).

It is clear that B has the same advantage in breaking sender security of ΠOT as A in
distinguishing the two hybrids.

• i = 1. The only difference in Hybrid 1 and Hybrid 2 is in how we generate ct1 (that
is ct1 := k1 ⊕mi−1 in Hybrid i). To argue indistinguishability of the two hybrids, it
suffices to show that k1 is indistinguishable from random. To achieve this, we observe that
because in both hybrids, the sender’s message {mS

j }j∈[n] is computed by the simulator
i.e., as {mS

j }j∈[n] ← Sim(1λ, {mR
j }j∈[n]), A cannot distinguish k1 from random by the

ability of knowing invalid labels. Thus, the only way A can distinguish k1 from random
should be by directly forging an output key k1 for the garbled circuit C. It is therefore
straightforward to use a successful adversary that distinguishes the two hybrids with
non-negligible advantage to break the authenticity of the underlying garbling scheme.
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• i = 2. This is handled identically to i = 0, except that in this case ct1 := k1⊕m1 encrypts
m1 instead of m0.

We conclude the proof by this observation that in any of the three cases, we reach a
contradiction and thus our assumption of the existence of A against the semantic security of
ΠcWE cannot be true.

Remark 5.4.5. The commitment scheme in ΠcWE is the receiver’s algorithm of ΠOT and therefore
by UC-security of ΠOT, it satisfies both extractability and hiding property. Using Lemma 5.4.3
and weak semantic security shown in Theorem 5.4.4, one can then conclude that ΠcWE also
achieves strong semantic security.

5.5 Construction of ECW
Here we show a novel construction of ECW from cWE. We then show alternative constructions
through instantiations from previous work.

5.5.1 ECW from cWE
In this section we realize the notion of ECW from cWE. We define our scheme with respect to a
set of parties P = {P1, . . . , Pn} executing a blockchain protocol Γ as described in Section 5.2.1,
i.e. each partyPi has access to the blockchain ledger and is associated to a tuple (Sig.pki, auxi, sti)
registered in the genesis block for which it has corresponding secret keys (Sig.ski, skL,i). Our
construction uses as a main building block a witness encryption scheme over commitments
ΠcWE = (EnccWE,DeccWE); we assume the commitments to be extractable. The class of circuits C
of ΠcWE includes the lottery predicate lottery(B, sl,R, skL,i). We let each party publish an initial
commitment of its witness. This way we can do without any interaction for encryption/decryption
through a one-time setup where parties publish the commitments over which all following
encryptions are done. We construct our ECW scheme ΠECW as follows:

System Parameters: We assume that a commitment key Setup(1λ)→ ck is contained in the
genesis block B0 of the underlying blockchain.

Setup Phase: All parties Pi ∈ P proceed as follows:

1. Compute a commitment cmi ← Commitck(skL,i; ρi) to skL,i using randomness ρi. We
abuse the notation and define Pi’s secret key as skL,i||ρi.

2. Compute a signature σi ← SigSig.ski(cmi).

3. Publish (cmi, σi) on the blockchain by executing Broadcast(1λ, (cmi, σi)).

Encryption Enc(B, sl,R,m): Construct a circuitC that encodes the predicate lottery(B, sl,R, skL,i),
where B, sl and R are hardcoded and skL,i is the witness. Let PSetup be the set of parties
with non-zero relative stake and a valid setup message (cmi, σi) published in the common
prefix B⌈κ (if Pi has published more than one valid (cmi, σi), only the latest one is con-
sidered). For every Pi ∈ PSetup, compute cti ← EnccWE(ck, xi = (cmi, C, 1),m). Output
ct =

(
B, sl,R, {cti}Pi∈PSetup

)
.
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Decryption Dec(B, ct, sk): For a given sk := skL,i||ρi such that cmi = Commitck(skL,i; ρi) and
lottery(B, sl,R, skL,i) = 1 (for parametersB, sl,R from ct), outputm← DeccWE(ck, cti, (skL,i, ρi)).
Otherwise, output ⊥.

Theorem 5.5.1. Let Com = (Setup,Commit) be a non-interactive extractable commitment
scheme and ΠcWE = (EnccWE,DeccWE) be a strong semantically secure cWE over Com for a
circuit class C encoding the lottery predicate lottery(B, sl,R, skL,i) as defined in Section 5.4.
Let Γ be a blockchain protocol as defined in Section 5.2.1. ΠECW is an IND-CPA-secure ECW
scheme as per Definition 5.3.2.

Proof. Assume by contradiction that there exists an adversary AECW with non-negligible
advantage in GameIND-CPA

Γ,A,Z,E in the ECW setting as described in Section 5.3.1. We construct an
adversary AcWE with black-box access to AECW that has non-negligible advantage in breaking
strong semantic security of ΠcWE as defined above. We assume (w.l.o.g.) that AECW only
corrupts one party Pa4. AcWE proceeds as follows:

1. Upon receiving the commitment key ck from the challenge, AcWE proceeds as follows:

a) AcWE acts as the environment Z orchestrating the execution of the blockchain
protocol Γ towardsAECW, placing the commitment key ck in the genesis block. AcWE

acts exactly as Z in GameIND-CPA
Γ,A,Z,E .

b) AcWE simulates honest parties Ph executing the setup phase and publishing a valid
(cmh, σh) on the blockchain. To simulate cmh for each honest party, AcWE calls the
oracle Ocom on some random input skL,h and sets cmh to be Ocom’s output.

c) At some point, AECW outputs challenge parameters B, sl,R,m0,m1 from its view of
the blockchain. AcWE constructs a circuitC that encodes the predicate lottery(B, sl,R, skL,i),
where B, sl and R are hardcoded and skL,i is the witness.

d) Finally, if there exists a valid setup message (cma, σa) published in the com-
mon prefix B⌈κ by Pa (i.e. the corrupted party Pa is in PSetup), AcWE extracts
skL,a, ρa from cma using the extractability of the commitment scheme Com and
outputs (state, skL,a, ρa, C, 1,m0,m1) to the challenger. Otherwise, AcWE outputs
(state, skL,k, ρk, C, 1,m0,m1) to the challenger, where skL,k, ρk are chosen at random
and such that C(skL,k) ̸= 1.

2. Upon receiving ciphertexts ct = {ct}∪{cth}Ph∈PSetup
from the challenger, if Pa ∈ PSetup,

then ct = cta was computed w.r.t. Pa’s commitment cma and cth computed w.r.t. the honest
party’s commitment cmh. Otherwise, if only honest parties are in PSetup, AcWE forwards
the ECW ciphertexts ct = {cth}Ph∈PSetup

to AECW. AcWE continues the execution of Γ
with AECW from the round where it stopped when AECW outputted challenge parameters
B, sl,R,m0,m1.

3. Upon receiving a guess b′ from AECW, AcWE forwards b′ to the challenger.

First, notice that AECW has the same access to the underlying blockchain protocol Γ (and to
the system parameters in the genesis block) as in GameIND-CPA

Γ,A,Z,E . In case AECW provided a valid
4In reality there will be more than one corrupted party; the main argument underlying our proof holds regardless.
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setup message, it receives ct containing a cWE ciphertext cta generated with respect to its
commitment cma and the circuit encoding the lottery predicate lottery(B, sl,R, skL,i), where B,
sl and R provided by AECW are hardwired. Moreover, ct contains ciphertexts cth for each cmh,
encrypting the samemb as in cta. Hence, ct is distributed exactly as in GameIND-CPA

Γ,A,Z,E . IfAECW has
non-negligible advantage in GameIND-CPA

Γ,A,Z,E , it is able to distinguish whether cta contains m0 or m1

with non-negligible advantage even though it does not have skL,a and cma ← Commitck(skL,a; ρa)
such that lottery(B, sl,R, skL,a) = 1, i.e. it does not have skL,a such that C(skL,a) = 1. This
means that, by forwarding guess b′ from AECW, AcWE in the cWE semantic security game has
the same advantage as AECW in GameIND-CPA

Γ,A,Z,E . In case it did not provide a valid setup message,
AECW only sees ct = {cth}Ph∈PSetup

with cth being an encryption of mb with respect to the
commitments cmh for which it does not know the opening. Hence, ct is again distributed exactly
as in GameIND-CPA

Γ,A,Z,E with probability 1. In this case, by an analogous argument as before, the
advantage of the adversary AcWE must be the same as the advantage of the adversary AECW in
GameIND-CPA

Γ,A,Z,E .
Since we assume that AECW has a non-negligible advantage, AcWE will also obtain a non-

negligible advantage and thus break the cWE scheme we assume is secure. Hence, ΠECW is an
IND-CPA-secure ECW scheme.

5.5.2 Other Instantiations
ECW from target anonymous channels [33, 103]. As mentioned before, another approach to
construct ECW can be based on a recent line of work that aims to design secure-MPC protocols
where parties should remain anonymous until they speak [33, 102, 103]. The baseline of
these results is to establish a communication channel to random parties, while preserving their
anonymity. It is quite clear that such anonymous channels can be used to realize our definition
of ECW for the underlying lottery predicate that defines to whom the anonymous channel is
established. Namely, to encrypt m to a role R at a slot sl with respect to a blockchain state B,
create a target anonymous channel to (R, sl) over B by using the above approaches and send
m via this channel. Depending on the lottery predicate that specifies which random party the
channel is created for, a recipient with the secret key who wins this lottery can retrieve m. To
include some concrete examples, the work of Benhamouda et al. [33] proposed the idea of
using a “nomination” process, where a nominating committee chooses a number of random
parties P , look up their public keys, and publish a re-randomization of their key. This allows
everyone to send messages to P while keeping their anonymity. The work of [33] answered
this question differently by delegating the nomination task to the previous committees without
requiring a nominating committee. That is, the previous committee runs a secure-MPC protocol
to choose a random subset of public keys, and broadcasts the rerandomization of the keys.
To have a MPC protocol that scales well with the total number of parties, they define a new
flavour of private information retrieval (PIR) called random-index PIR (or RPIR) and show how
each committee—playing the role of the RPIR client—can select the next committee with the
complexity only proportional to the size of the committee. There are two constructions of RPIR
proposed in [103], one based on Mix-Nets and the other based on FHE. Since the purpose of the
constructions described is to establish a target-anonymous channel to a random party, one can
consider them as examples of a stronger notion of ECW with anonymity and a specific lottery
predicate that selects a single random party from the entire population as the winner.
ECW from [76]. Derler and Slamanig [76] (DS) constructed a variant of WE for a restricted
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class of algebraic languages. In particular, a user can conduct a Groth-Sahai (GS) proof for the
satisfiability of some pairing-product equations (PPEs). Such a proof contains commitments
to the witness using randomness only known by this user. The proof can be used by anyone
to encrypt a message resulting in a ciphertext which can only be decrypted by knowing this
randomness. More formally, they consider a type of WE associated with a proof system
Π = (Setup,P,V) consisting of two rounds. In the first round, a recipient computes and
broadcasts π ← P(crs, x,w). Later, a user can verify the proof and encrypt a message m under
(x, π) if V(crs, x, π) = 1. We note that the proof π does not betray the user conducting the
proof and therefore it can use an anonymous broadcast channel to communicate the proof to the
encrypting party in order to obtain anonymous ECW. Moreover, although GS proofs may look
to support only a restricted class of statements based on PPEs, they are expressive enough to
cover all the statements arising in pairing-based cryptography. This indicates the applicability
of this construction for any VRF-based lottery where the VRF is algebraic and encodable as
a set of PPEs. This interactive ECW just described yields an improvement in communication
complexity at the cost of having an extra round of interaction.
From Signatures of Knowledge. Besides the above instantiations, we point out a (potentially
more inefficient) abstract construction from zero-knowledge signatures of knowledge (SoK) [59]
(roughly, a non-malleable non-interactive zero-knowledge proof). This is similar in spirit to the
previous instantiation and can be seen as a generalization. Assume each party has a (potentially
ephemeral) public key. At the time the lottery winner has been decided, the winners can post
a SoK showing knowledge of the secret key corresponding to their pk and that their key is a
winner of the lottery. To encrypt, one would first verify the SoK and then encrypt with respect to
the corresponding public key.

5.6 YOSO Multiparty Computation from ECW
In this section we show how ECW can be used as the crucial ingredient in setting up a YOSO
MPC. So far we have only focused on IND-CPA secure ECW, which falls short of role assignment
in the sense of [102]. In general role assignment requires the following properties which are not
provided by ECW (or EtF):

1. Multiple parties must be able to send messages to the same role (in most applications this
requires IND-CCA).

2. Parties must authenticate messages on behalf of a role they executed in the past (authenti-
cation from the past)

3. A party assigned to a given role must stay covert until the role is executed.

We will define a number of properties needed for EtF to realize applications such as role
assignment. We start by looking at CCA security for an EtF scheme. We then introduce
the notion of Authentication from the Past (AfP) and definition of unforgeability and privacy
guarantees. Finally, we introduce the notion of YOSO-friendly blockchains that have inbuilt
lotteries with properties that are needed to conduct YOSO MPC and corresponding EtF and AfP
schemes.
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viewr ← EXECΓ
r (AOEtF ,Z, 1λ) ▷ A executes Γ with Z until round r

(B, sl,R,m0,m1)← AOEtF(viewr
A) ▷ A outputs challenge parameters

b←$ {0, 1}
ct← Enc(B, sl,R,mb)
st← AOEtF(viewr

A, ct) ▷ A receives challenge ct
viewr̃ ← EXECΓ

(viewr,r̃)(AOEtF ,Z, 1λ) ▷ Execute from viewr until round r̃

(B̃, b′)← AOEtF(viewr̃
A, st)

if evolved(B, B̃) = 1 then ▷ B̃ is a valid evolution of B
if skAL,j /∈ WB̃,R,sl ∧ ct /∈ QEtF then ▷ A does not win role R

return b⊕ b′

end if
end if
return g ←$ {0, 1}

Figure 5.8: GameIND-CCA2
Γ,A,Z,E

5.6.1 IND-CCA EtF
In this section we define what it means for an EtF to be IND-CCA secure. This security property
is useful in many applications where more encryptions are done towards the same slot and role.
As in the definition of IND-CPA, we establish a game between a challenger C and an adversaryA.
We introduce a decryption oracle, OEtF, which on input ct returns the decryption of ciphertext.
Furthermore, the OEtF maintains a list of ciphertext queries QEtF. Fig. 5.8 shows the details of
the game.

Definition 5.6.1 (IND-CCA2 Secure EtF). Formally, an EtF-scheme E is said to be IND-CCA2
secure in the context of a blockchain protocol Γ executed by PPT machines A and Z if there
exists a negligible function µ such that for λ ∈ N:∣∣2 · Pr

[
GameIND-CCA2

Γ,A,Z,E = 1
]
− 1
∣∣ ≤ µ(λ)

To add IND-CCA2 security to an IND-CPA secure EtF scheme (as defined in Definition 5.3.2)
we can use standard transformations such as [90, 150]. In the transformation based on [150] we
could add to the setup of the blockchain a CRS for a simulation-sound extractable NIZK. When
encrypting m to a role R the sender will send along a proof of knowledge of the plaintext m.
We get the challenge ciphertext from the IND-CPA game and use the ZK property to simulate
the NIZK proof. We can use the extraction trapdoor of the proof system to simulate the CCA
decryption oracles by simulation soundness. When the IND-CCA2 adversary makes a guess, we
make the same guess. The details of the construction and proof follow using standard techniques
and are omitted. On the other hand, the popular transformation of [90] allows for simulating
CCA decryption oracles by observing the adversary’s queries to a random oracle, which should
not be an issue since an EtF scheme is likely already running on top of a blockchain which is
secure in the random oracle model. We leave the construction of concretely efficient IND-CCA2
EtF as future work.
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5.6.2 Authentication from the Past (AfP)
When the winner of a role R1 sends a message m to a future role R2 then it is typically also
needed that R2 can be sure that the message m came from a party P which, indeed, won the role
R1. Most PoS blockchains deployed in practice have a lottery where a certificate can be released
proving that P won the role R1. In order to formalize this concept, we introduce an AfP scheme
with a corresponding EUF-CMA game representing the authentication property.

Definition 5.6.2 (Authentication from the Past). A pair of PPT algorithms U = (Sign,Verify)
is a scheme for authenticating messages as a winner of a lottery in the past in the context of
blockchain Γ with lottery predicate lottery.

Authenticate. σ ← AfP.Sign(B, sl,R, sk,m) takes as input a blockchain B, a slot sl, a role R,
a secret key sk, and a message m. It outputs a signature σ that authenticates the message
m.

Verify. {0, 1} ← AfP.Verify(B̃, sl,R, σ,m) uses the blockchain B̃ to ensure that σ is a signature
on m produced by the secret key winning the lottery for slot sl and role R.

Furthermore, an AfP-scheme has the following properties:

Correctness. An AfP-scheme is said to be correct if for honest parties i and j, there exists a
negligible function µ such that for all sk, sl,R,m:∣∣∣∣∣∣∣∣Pr


view← EXECΓ(A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
σ ← AfP.Sign(B, sl,R, sk,m)

:

lottery(B, sl,R, sk) = 0

∨ lottery(B̃, sl,R, sk) = 0

∨ AfP.Verify(B̃, sl,R, σ,m) = 1

− 1

∣∣∣∣∣∣∣∣ ≤ µ(λ)

In other words, an AfP on a message from an honest party with a view of the blockchain
B can attest to the fact that the sender won the role R in slot sl. If another party, with
blockchain B̃ agrees, then the verification algorithm will output 1.

Security. We here describe the game detailed in Fig. 5.9 representing the security of an AfP
scheme. The algorithm represents a standard EUF-CMA game where the adversary has
access to a signing oracle OAfP which it can query with a slot sl, a role R and a message
mi and obtain AfP signatures σi = AfP.Sign(B, sl,R, skj,mi) where skj ∈ WB,sl,R i.e.
lottery(B, sl,R, skj) = 1. The oracle maintains the list of queries QAfP.
Formally, an AfP-scheme U is said to be EUF-CMA secure in the context of a blockchain
protocol Γ executed by PPT machines A and Z if there exists a negligible function µ such
that for λ ∈ N:

Pr
[
GameEUF-CMA

Γ,A,Z,U = 1
]
≤ µ(λ)

General AfP.

In general we can add authentication to a message as follows. Recall that Pi wins R if
lottery(B, sl,R, skL,i) = 1. Here,R(x = (B, sl,R),w) = lottery(x,w) is an NP relation where
all parties know x but only the winner knows a witness w such that R(x,w) = 1. We can
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view← EXECΓ(A,Z, 1λ) ▷ A executes Γ with Z
(B, sl,R,m′, σ′)← AOAfP(viewA)
if (m′ ∈ QAfP) ∨ (skAL,j ∈ WB,sl,R) then ▷ AOAfP won or queried illegal m′

return 0
end if
viewr̃ ← EXECΓ

(viewr,r̃)(A,Z, 1λ) ▷ Execute from viewr until round r̃

B̃← GetRecords(viewr̃
i )

if evolved(B, B̃) = 1 then
if AfP.Verify(B, sl,R, σ′,m′) = 1 then ▷ A successfully forged an AfP

return 1
end if

end if
return 0

Figure 5.9: GameEUF-CMA
Γ,A,Z,U

therefore use a signature of knowledge (SoK) [59] to sign m under the knowledge of skL,i such
that lottery(B, sl,R, skL,i) = 1. This will attest that the message m was sent by a winner of the
lottery for R. In Section 5.6.4, we show more efficient construction of AfP by exploring the
structure of PoS-based blockchains with VRF lotteries.

5.6.3 AfP Privacy
Just EUF-CMA security is not sufficient for an AfP mechanism to be YOSO friendly. It must
also preserve the privacy guarantees of the lottery predicate, guaranteeing that the adversary
does not gain any undue advantage in predicting when a party is selected to perform a role after
it uses AfP to authenticate a message. To appreciate this fact, we consider the case where instead
of creating a signature of knowledge of skL,i on message m we simply use a regular EUF-CMA
secure signature scheme to sign the message concatenated with skL,i, revealing the signature
public key, the resulting signature and skL,i itself as a means of authentication. By definition,
this will still constitute an existentially unforgeable AfP but will also reveal whether the party
who owns skL,i is the winner when future lotteries are conducted. The specific privacy property
we seek is that an adversary, observing AfP tags from honest parties, cannot use this information
to enhance its chances in predicting the winners of lotteries for roles for which an AfP tag has
not been published. On the other hand, the identity of a party who won the lottery for a given
role is not kept private when it publishes an AfP tag on behalf of this role, which is not an issue
in a YOSO-setting since corruption after-the-fact is futile. Specifically, we allow an AfP tag to
be linked to the identity of the party who generated it. Note, that this kind of privacy is different
from notions like k-anonymity since the success of the adversary in guessing lottery winners
with high accuracy depends on the stake distribution. The stake distribution is public in most
PoS-settings and, thus, a privacy definition must take into account this inherent leakage.

Definition 5.6.3 (AfP Privacy.). An AfP scheme U with corresponding lottery predicate lottery
is private if a PPT adversary A is unable to distinguish between the scenarios defined in the
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following two algorithms with more than negligible probability in the security parameter.

Scenario 0 (b = 0). In this scenario, A is first running the blockchain Γ together with the
environmentZ . At round r,A is allowed to interact with the oracleOAfP (see Definition 5.6.2).
The adversary then continues the execution until round r̃ where it outputs a bit b′.

Scenario 1 (b = 1). This scenario is identical to scenario 0 but instead of interacting with OAfP,
the adversary interacts with a simulator Sim.

b = 0

viewr ← EXECΓ
r (A,Z, 1λ)

AOAfP(viewr
A)

viewr̃ ← EXECΓ
(viewr,r̃)(A,Z, 1λ)

return b′ ← AOAfP(viewr̃
A)

b = 1

viewr ← EXECΓ
r (A,Z, 1λ)

ASim(viewr
A)

viewr̃ ← EXECΓ
(viewr,r̃)(A,Z, 1λ)

return b′ ← ASim(viewr̃
A)

We let GameAfP-PRIVΓ,A,Z,U denote the game where a coin-flip decides whether the adversary
is executed in scenario 0 or scenario 1. We say that the adversary wins the game (i.e.
GameAfP-PRIVΓ,A,Z,U = 1) iff b′ = b. Finally, an AfP scheme U is called private in the context of
the blockchain Γ executed together with environment Z if the following holds for a negligible
function µ. ∣∣2 · Pr

[
GameAfP-PRIVΓ,A,Z,U = 1

]
− 1
∣∣ ≤ µ(λ)

5.6.4 More Efficient AfP based on VRF
VRF-based Lottery.

This section introduces a specific lottery mechanism which will be the underlying lottery predicate
for the AfP described in the next section. The backbone of the lottery is a VRF scheme VRF
as described in [73]. This VRF has the properties of simulatability and unpredictability under
malicious key generation which will become useful when arguing about security of the AfP.
The VRF scheme is a tuple (VRF.Gen,VRF.Prove,VRF.Verify) where VRF.Gen(1κ) outputs
a pair of keys (VRF.pk,VRF.sk). The VRF.Prove takes as input a value x and outputs a pair
(y, π)← VRF.ProveVRF.sk(x) which is the output value y and the correctness certificate π. The
verification is then done by evaluating VRF.VerifyVRF.pk(x, y, π) which outputs 1 iff π attests to
the correctness of y as the output of the VRF evaluated on x with key VRF.sk.
We recall the blockchain setup described in Section 5.2.1 where each party Pi is represented by
a pair (Sig.ski, skL,i) associated with public data (Sig.pki, auxi, stakei). Let auxi contain a VRF
public keyVRF.pki as described above and let the lottery secret key be skL,i = (Sig.pki,VRF.ski).
Finally, we introduce a functionparam(B, sl). This function outputs a tuple ({Sig.pki,VRF.pki, stakei}i∈[n],
η, ϕ) associated with the specific blockchain B and slot sl. Beyond obtaining the public informa-
tion (Sig.pki,VRF.pki, stakei) the function also returns a nonce, η, as well as a public function
ϕ(·) which on input stakei computes the threshold for winning the lottery.
The lottery predicate based on the VRF is described in Fig. 5.10.
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({Sig.pki,VRFL,i, stakei}i∈[n], η, ϕ)← param(B, sl)
(Sig.pkj,VRF.skj)← skL,j
(y, π)← VRF.ProveskL,j

(sl||R||η)
if y < ϕ(stakej) then

if VRF.VerifyvkL,j
(sl||R||η, y, π) = then

return 1
end if

end if
return 0

Figure 5.10: lotteryVRF(B, sl,R, skL,j)

VRF-based AfP.

With the VRF-based lottery lotteryVRF in place, we are now ready to introduce the VRF-based
AfP. We first note that our general approach of applying a SoK for the knowledge of a secret key
still applies. However, using the structure of the lottery, and in particular the VRF, allows for a
much more efficient AfP which has applications in most PoS settings as well.
The AfP scheme uses aNIZKPoKwhich has a setup executed as a part of the blockchain setup such
that the CRS is in the genesis block. The algorithms for the scheme areπ ← NIZKPoK.P(crs, x,w)
and {0, 1} ← NIZKPoK.V(crs, x, π).

Protocol ΠAfP The VRF-based AfP protocol ΠAfP is described below.

Authenticate. σ ← ΠAfP.Sign(B, sl, S, skL,j,m) To authenticate a message, m, a party first
checks that lotteryVRF(B, sl, S, skL,j) = 1. It then obtains the output and certificate
(y, πVRF)← VRFrf.ProveVRF.skL,j

(sl||R||η). Finally, it producesπNIZKPoK ← NIZKPoK.P{σSIG |
Sig.VerifySig.pkj(σSIG,m) = 1}which is a NIZK-PoK of a signature produced underSig.skj .
It then outputs a tuple σAfP ← (Sig.pkj, y, πVRF, πNIZKPoK)

Verify. {0, 1} ← ΠAfP.Verify(B̃, sl, S, σ,m) To verify an AfP tag the verifier obtains parameters
from the blockchain ({Sig.pki,VRF.pki, stakei}i∈[n], η, ϕ)← param(B, sl). It then parses
the tag as σAfP ← (Sig.pkj, y, πVRF, πNIZKPoK) and gets the VRF verification key VRF.pkj
for the party that the AfP points to. It then checks the following

1. Makes sure that VRF.VerifyVRF.pkj(sl||R||η, y, πVRF) = 1 i.e. the VRF output was
correctly generated under lottery key of party Pj .

2. Checks that NIZKPoK.V(πNIZKPoK, (Sig.pkj,m)) = 1 which verifies the proof of
signature knowledge.

3. And y < ϕ(stakej) which makes sure that the lottery was conducted correctly with
the stake of Pj .

If all checks go through, the algorithm outputs 1. Otherwise, it outputs 0.
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Theorem 5.6.4. Let VRF be the VRF scheme described in [73] with a secure NIZK-PoK scheme
NIZKPoK. The protocol ΠAfP (described above) running in the context of a blockchain protocol
Γ with underlying lottery lotteryVRF (Fig. 5.10) is an AfP scheme according to Definition 5.6.2.

Proof. (Sketch) Assume that an adversaryA obtains a non-negligible advantage in GameEUF-CMA
Γ,A,Z,U .

In other words, A is able to forge an AfP tag with noticeable probability. We claim that such an
adversary can do at least one of two things:

1. It can forge a signature under (Sig.ski, thus violating the EUf-CMA security of the
signature scheme.

2. It can produce a convincing proof πNIZKPoK of knowledge of a signature produced with a
signature secret key where the corresponding lottery secret key did not win the lottery.
Since we assume that only Pi knows the pair (Sig.ski, skL,i), such a convincing proof must
violate the soundness of the NIZKPoK scheme.

3. It can forge a VRF certificate such that the VRF.Verify algorithm accepts a certificate πVRF

under a different y′ ̸= y when evaluated with the VRF public key VRF.pk of the adversary
and thus convinces the authenticator. This violates the simulator of the simulatable VRF
introduced in [73].

Since we assume that NIZKPoK is a secure NIZK-PoK scheme and VRF a secure scheme based
on the functionality in [73], we conclude that ΠAfP is secure with respect to Definition 5.6.2.

AfP Privacy.

This simple AfP mechanism for a VRF-based lottery predicate does not only satisfy the existential
unforgeability definition of an AfP. It has AfP privacy.

Theorem 5.6.5. The AfP protocol ΠAfP described above with underlying lottery predicate
lotteryVRF running in the context of blockchain Γ has AfP privacy.

Proof (Sketch).
We use the notation D0 and D1 for the distribution of outputs when the adversary is put in
scenario 0 and scenario 1, respectively. Our aim is to show the existence of a simulator such that
D0 and D1 are computational indistinguishable.
We introduce 4 hybrids {Hi}i=1,...,4 where H1 = D0 and H4 = D1.

H2 This hybrid is identical to H1 but we use the simulator of the NIZKPoK scheme to simulate
the proof of signature knowledge that convinces. Due to the security of the NIZKPoK
scheme H2 and H1 are indistinguishable to the PPT adversary A.

H3 The difference from H2 is that instead of invoking the VRF scheme VRF we are using the
simulatability of the construction to output valid proofs.

H4 This hybrid does not need access to any lottery winning secret keys and thus can be
completely simulated by Sim. It is still necessary to observe the distribution of the stake
to correctly simulate the output of the oracle OAfP.
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Assume that an adversary can distinguishD0 andD1 with non-negligible probability ρ. It implies
that there exists an i ∈ {1, 2, 3} such that Hi and Hi+1 can be distinguished with non-negligible
probability at least ρ/3. This contradicts the indistinguishability of hybrids. Thus, we conclude
that the distributions D0 and D1 are computationally indistinguishable due to the simulator Sim
obtained through the sequence of hybrids above.

5.6.5 Round and Committee Based YOSO Protocols
Having IND-CCA2 ECW and an EUF-CMA secure and Private AfP, we can establish a round-
based YOSO model, where there is a number of rounds r = 1, 2, . . . and where for each round
there are n roles Rr,i. We call the role Rr,i “party i in round r”. We fix a round length L and
associate role Rr,i to slot sl = L · r. This L has to be long enough that in each round the parties
executing the roles can decrypt ciphertexts sent to them, execute the steps of the role, compute
encryptions to the roles in the next round and post these to the blockchain in time for these to be
available to the committee of round r + 1 before slot (r + 1) · L. Picking such an L depends
crucially on the underlying blockchain and network, and we will here simply assume that it can
be done for the blockchain at hand.

Using this setup, the roles Rr,i of round r can use ECW and AfP with the aforementioned
properties to send secret authenticated messages to the roles Rr+1,i in round r + 1. They find
their ciphertexts on the blockchain before slot r ·L, decrypt using ECW, compute their outgoing
messages, encrypt using ECW, authenticate using AfP, and post the ciphertexts and AfP tags on
the blockchain.

Honest Majority.

In round based YOSO MPC it is critical that we can assume some fraction of honesty in each
committee Rr,1, . . . ,Rr,n. We discuss here assumptions needed on the lottery for this to hold and
how to guarantee it. Assume an adversary that can corrupt parties identified by sk and a lottery
assigning parties to roles Rr,i. We map the corruption status of parties to roles as follows:

1. If a role Rr,i is won by a corrupted party or by several parties, call the role Malicious.
Even if Rr,i is won by two honest parties, they will both execute the role and send outgoing
messages, which might violate security.

2. If a role Rr,i is won by exactly one honest party, call it Honest.

3. If a role Rr,i is not won by any party, call it Crashed. These roles will not be executed
and are therefore equivalent to a crashed party.

Note that because we assume corrupted parties know their lottery witness skL,i in our model,
we can, in poly-time, extract those witnesses and compute the corruption status of roles. This
will be crucial in our reductions. Imagine that a role could be won by an honest party but also by
a corrupted party which stays completely silent but decrypts messages sent to the role. If we are
not aware of the corrupted party winning the role, we might send a simulated ciphertext to the
apparently honest role. The corrupted party also having won the role would be able to detect
this. Since any role won by an honest party could also be corrupted by a silent malicious party,
simulation would become impossible.
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In order to realize YOSO MPC, we will need committees where a majority of the roles are
honest according to the description above. We capture this requirement in the definition below.

Definition 5.6.6 (Honest Committee Friendly). We call a blockchain Γ honest committee friendly
if there exist n and H and T such that H > T s.t. we can define a sequence of roles Rr,i for
r = 1, . . . , poly(λ) and i = 1, . . . , n for a slot slr and that for all r it holds that except with
negligible probability there are at least H honest roles in Rr,1, . . . ,Rr,n and at most T malicious
roles. Furthermore, if an honest party executing Rr,1, . . . ,Rr,n sends a message at slr, it is
guaranteed to appear on the blockchain before slot slr+1.

We are now ready to capture the above discussion using a definition.

Definition 5.6.7 (YOSO Friendly Blockchain). Let Γ be a blockchain with a lottery predicate
lottery(B, slr,Rr,i, skL,i) and let E = (Enc,Dec) and U = (Sign,Verify) be an EtF and AfP for
lottery(B, slr,Rr,i, skL,i), respectively. We call (Γ, E ,U) YOSO MPC friendly if the following
holds:

1. E is an IND-CCA2 secure EtF (Definition 5.6.1).

2. U is a secure and private AfP (Definitions 5.6.2 and 5.6.3).

3. Γ is honest committee friendly (Definition 5.6.6).

We will later assume a YOSO friendly blockchain, and we argued above that the existence of
a YOSO friendly blockchain is a plausible assumption without having given formal proofs of this.
It is interesting future work to prove that a concrete blockchain is a YOSO friendly blockchain in
a given communication model. We omit this as our focus is on constructing flavours of EtF.

5.7 Construction of EtF from ECW and Threshold-IBE
The key intuition about our construction is as follows: we use IBE to encrypt messages to an
arbitrary future (R, slfut) pair. When the winners of the role in slot slfut are assigned, we let them
obtain an ID-specific key for (R, slfut) from the IBE key-generation algorithm using ECW as
a channel. Notice that this key-generation happens in the present while the encryption could
have happened at any earlier time. We generate the key for (R, slfut) in a threshold manner by
assuming that, throughout the blockchain execution, a set of committee members each holds a
share of the master secret key mski.

5.7.1 Construction
We now describe our construction. We assume an encryption to the current winner ΠECW =
(EncECW,DecECW) and a threshold IBE scheme ΠTIBE. In the setup stage we assume a dealer
acting honestly by which we can assign master secret key shares of the TIBE.

Parameters: We assume that the genesis block B0 of the underlying blockchain contains all the
parameters for ΠECW.
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Setup Phase: Parties run the setup stage for the ΠECW. The dealer produces (mpk,msk =
(msk1, . . . ,mskn)) from TIBE setup with threshold k. Then it chooses n random parties and
gives a distinct mski to each. All learn mpk.

Blockchain Execution: The blockchain execution we assume is as in Section 5.3. We ad-
ditionally require that party i holding a master secret key share mski broadcasts ctsk,i(sl,R) ←
EncECW(B, sl,R, ski(sl,R)), whenever the winner of role R in slot sl is defined in the blockchain
B, where ski(sl,R) ← ΠTIBE.IDKeygen(mski, (sl,R)).

Encryption Enc(B, sl,R,m): Each party generates cti ← ΠTIBE.Enc(mpk, ID = (sl,R),m).
Output ct = (B, sl,R, {cti}Pi

).

Decryption Dec(B, ct, sk): Party i outputs⊥ if it does not have skL,i such that lottery(B, sl,R, skL,i) =
1 for parameters B, sl,R from ct. Otherwise, it retrieves enough (above threshold) valid ci-
phertexts ctsk,j(sl,R) from the current state of the blockchain and decrypts each through ΠECW

obtaining skj(sl,R). It then computes sk(sl,R) ← ΠTIBE.Combine(mpk, (skj(sl,R))j). It finally
outputs m← ΠTIBE.Dec(sk(sl,R), ct).

Resharing. We can ensure that the master secret key is proactively reshared by modifying each
party so that mski-s are reshared and reconstructed in the evolution of the blockchain.

Correctness. Correctness of the construction follows from the correctness of the underlying
IBE and the fact that a winning role will be able to decrypt the id-specific key by the correctness
of the ECW scheme.

5.7.2 Security and Proof Intuition
In the following we assume some of the extensions discussed in Section 5.6.

Theorem 5.7.1 (informal). Let ΓV be a YOSO MPC friendly blockchain, ΠTIBE be a robust
secure threshold IBE as in Section 5.2.5 with threshold n/2, and ΠECW a secure IND-CCA2
ECW. The construction in Section 5.7.1 is a secure EtF.

At the high level we show security in two steps. We first show the security of our construction
for a simplified non-threshold setting with a standard IBE instead of a threshold one with
key-sharing. In other words we do not temporarily consider the real case where there is a
committee of parties holding a share of the master secret key, but we assume the execution uses
a “key provider” oracle holding the master secret key of the IBE scheme. In particular, we define
the behavior of oracle Ok-provider

msk as follows: given in input a blockchain B and a slot sl (such
that the latest slot of B is sl), it broadcasts a ciphertext for the winner5 of the slot computed as
ctsksl ← EncECW(B, sl,R, sksl) where sksl ← IBE.Keygen(msk, (sl,R)).

As a second step in the proof we show that, in the threshold-setting (where the master
secret key is actually shared), one can obtain an adversary with a comparable advantage in the
threshold-setting from an adversary in the non-threshold setting. Intuitively, we can do this
because of the low amount of stake the adversary is controlling and the security of threshold-IBE.

5This is actually a vector, one for each winner in the slot. For clarity of discussion we just consider the case for
one winner. The general case follows straightforwardly.
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The non-threshold setting we consider is the same as that in Section 5.7.1 with the following exceptions:

• At the beginning of the run of the blockchain, there is no sharing of the master secret key of the IBE
scheme.

• We let the honest parties run exactly as in the other construction, with the exception that they validate
and messages related to the shares of the master secret keys, as well as of the secret keys for specific
slots.

• We change the way we encapsulate the secret-key for a certain slot. While in Section 5.7.1 we require
committee members to each broadcast a ciphertext containing a share of the secret-key for slot sl, here
we instead replace that stage with the execution of the following oracle Ok-provider

msk .

Ok-provider
msk (B, sl) :

– sksl ← IBE.Keygen(msk, (sl,R))

– ctsksl ← EncECW(B, sl,R, sksl)

– Broadcast ctsksl

Figure 5.11: Hybrid non-threshold setting for proof of security

Finally, our proof considers the case of an adversary with static corruptions, but we point out
it can be straightforwardly compiled to a full round and committee YOSO setting as described in
Section 5.6.

Proof. We proceed in two steps: first we consider an idealized case where there is no threshold
committee; we then show we can prove security of our threshold construction from this setting.

1. The non-threshold case. The simplified setting we will now show security for is in
Fig. 5.11. A point on the view of the adversary: we recall that, at any given point in time, a
valid blockchain execution contains ciphertexts ctsksl , encrypting slot-specific secret keys for the
winner of the slot sl in the chain. In the non-threshold setting, they correspond to the output of
the key-provider oracle (in the actual construction, there are more ciphertexts, each containing a
share of the key).

Now assume an adversary Ano-thresh
EtF for the EtF security experiment controlling at most an α

fraction of the stake with non-negligible success probability in the EtF security experiment. We
first to construct an adversary AIBE for IBE security using Ano-thresh

EtF . Adversary AIBE works as
follows:

• On receiving the IBE public parameters from the IBE challenger, it injects into blockchain
genesis block the IBE’s master public. The adversary Ano-thresh

EtF declares a corrupted set of
parties Scorr and then AIBE runs an execution of the blockchain with Ano-thresh

EtF where AIBE
simulates the honest parties. In this execution AIBE acts as key-provider oracle, which it
emulates as follows. We distinguish two cases depending on whether the winner of the
slot is a corrupted party or an honest one6. On query (B, sl):

– if a corrupted party has won the role for slot sl (i.e. winners(B, sl,R) ∩ Scorr ̸= ∅)
then invoke the IBE challenger oracle on identity sl obtaining sksl and broadcast
ctsksl ← EncECW(B, sl,R, sksl).

6Notice that we can check this for both types of parties as discussed in Section 5.2.1.
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– if a corrupted party has not won the role for slot sl then broadcast the encryption
of a dummy plaintext ctsksl ← EncECW(B, sl,R,0) where 0 is a string of zeros of the
appropriate length.

The intuitive reason for separating the two cases is that we want to query the same slots
that Ano-thresh

EtF wins and no more. In particular we do not want to query the challenge
slot sl∗ (defined next). Notice, in fact, that only the slots for which the adversary has
a corrupted winner will be asked to the IBE key-generation oracle. At the end of this
stage, Ano-thresh

EtF will return (B, sl∗,R,m0,m1) and AIBE will forward ((sl∗,R),m0,m1) to
the IBE challenger.

• After receiving a ciphertext ct∗ from the IBE challenger, AIBE forwards it to Ano-thresh
EtF .

Then AIBE simulates the execution of the blockchain as described above. At the end of the
execution Ano-thresh

EtF outputs a guessing bit b∗ which AIBE forwards to the IBE challenger.

We claim that the advantage of AIBE in the IBE experiment is negligibly close to that of
Ano-thresh

EtF in the EtF non-threshold experiment (the one without threshold sharing). With that
goal in mind, we first show that the inputs we feed to Ano-thresh

EtF and the blockchain execution
emulated by AIBE is indistinguishable from that in the EtF experiment. Notice that the only
difference in the distributions is in the ciphertexts for the non-corrupted winners. If we could
distinguish between the two cases, then we could break security of the ECW scheme. Therefore
the views of Ano-thresh

EtF in the two cases is indistinguishable. Finally, we lower-bound the success
probability of AIBE. Intuitively, we can observe that two adversaries return the same experiment
bit. The only aspect that could impair AIBE’s success probability compared to Ano-thresh

EtF ’s is the
possibility of having asked the IBE key-generation oracle for the challenge slot sl∗. We observe
this does not affect the success probability of AIBE.

2. Security of threshold construction from non-threshold case. The argument above had a
simplified setting where we abstracted out all the threshold aspects of the protocol. This includes
the committee holding shares of the master secret key and dealing shares of the slot-specific
secret key. We now prove security for the actual threshold scenario building an adversary for our
actual (threshold) construction using the adversary for the non-threshold construction (Fig. 5.11).

The threshold adversary Athresh
EtF needs to emulate the setting for the other adversary where

there is a single ciphertexts containing the slot-specific secret key (instead of several containing
their shares). It works as follows. First, it corrupts the same parties as Ano-thresh

EtF and executes a
blockchain as Ano-thresh

EtF does and broadcasting the same messages it does, with one exception
which we now describe. The views of two adversaries (threshold vs non-threshold) differ in only
one respect—and so do the two respective blockchains executions. The view of the threshold
execution contains ciphertexts of this type for each winning slot sl (we use bracket notation for
shares for readability):

((
cthon

sl [j]
)
j ̸∈Scorr

, (ctcor
sl [j])j∈Scorr

)
These contain the shares for the

slot-specific slot sl. The view for the non-threshold execution instead contains a single ciphertext
with slot-specific secret key. For a honest slot not corrupted by the adversary, we denote it by
ĉt

hon
sl , otherwise we denote it by ĉt

cor
sl . During the blockchain executionAno-thresh

EtF will expect to see
some ciphertext (ĉthon

sl /ĉtcor
sl ) whenever a slot is won, which corresponds to a query of Ok-provider

msk .
The threshold adversary Athresh

EtF can emulate this as follows. For every query to Ok-provider
msk :

• if the slot is won by a honest party, then broadcast ĉthon
sl ← EncECW(B, sl,0) for a vector

of zeros of the appropriate length.
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• if the slot is won by a corrupted party, then its view will contain (ctcor
sl [j])j∈[n]. It

can then decrypt them, combine the obtained shares into a slot key sksl and broadcast
ĉt

cor
sl ← EncECW(B, sl, sksl)

After receiving challenge messages fromAno-thresh
EtF , adversaryAthresh

EtF simply forwards them to
its challenger, then continues the execution as above. Finally it outputs the same output guess as
Ano-thresh

EtF .
We now claim that a successful non-threshold adversary Ano-thresh

EtF for the construction in
Fig. 5.11 would allow Athresh

EtF to have a similar advantage (up to negligible additive factors). We
proceed by a standard hybrid argument. We define the first hybrid H0 as the output of running
the Athresh

EtF adversary as just described. The “terminal” hybrid H6 is defined as the output of
running the Ano-thresh

EtF adversary. The intermediate hybrids are as follows.

• H1: like H0 except that we change one step in howAthresh
EtF emulatesOk-provider

msk . Specifically,
for the case of the honest parties, we now run (skID

i )i∈[n] ← Simkg(mpk, (mski)i∈Scorr , sl)
to simulate the shares of the honest parties. This simulator exists by key-generation
simulation of the threshold IBE scheme. We can then combine all shares to obtain a
slot-specific key, encrypt it through ECW and then broadcast the encryption ĉt

hon
sl . We

have that H0 ≈ H1 because of the security of ECW, since otherwise we would be able to
distinguish encryptions of zeros from encryptions of the (combination of) the simulated
slot-specific key shares.

• H2: as previous item but now, instead of the actual secret shares, we give Athresh
EtF produced

by Simmsk, the simulator from master secret key shares simulation of the threshold IBE
scheme. H1 ≈ H2 follows by the same property.

• H3: like the previous hybrid, but now we replace the blockchain execution from H2 with
one where we do not use the shares to produce ĉt

hon
sl and ĉt

cor
sl . Instead we move to a

blockchain execution as in Fig. 5.11 with the difference that Ok-provider
msk has a master secret

key computed as follows. Let msk be the master secret key obtained by combining the
(simulated) shares mski. Then we just run Ok-provider

msk with this master secret key every time
we need to provide a ciphertext for a new winning slot. We have H2 ≈ H3 by definition of
Ok-provider

msk , by correctness of the underlying homomorphic secret sharing scheme and the
simulation of key-generation evaluations of IBE.

• H4: as before but we now define msk not as the combination of the shares, but as the
output of Simmsk on the master public key and the corruption set. H3 ≈ H4 follows by
simulation of the master secret-key property of the threshold IBE.

• H5: Like previous item but now we do not use the key-generation simulator and instead
apply the key-generation of the IBE before providing a ciphertext. H4 ≈ H5 again follows
by the key-generation simulation of the threshold IBE scheme. Also this is the same as H6

by construction.

Bounding the Advantage of AIBE in Proof of Theorem 5.7.1. Here we formally claim
that the advantage of AIBE in the IBE experiment is negligibly close to that of Ano-thresh

EtF in the
EtF non-threshold experiment:
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Pr [WinIBE] ≥Pr [¬QryClgSlot ∧ WinEtFHyb]

= (1− Pr [QryClgSlot | WinEtFHyb]) · Pr [WinEtFHyb]

≈ (1− Pr [Scorr ∩ winners(sl∗) ̸= ∅ | WinEtFHyb]) · Pr [WinEtFHyb]

=Pr [WinEtFHyb]

Above theQryClgSlot is the event whereAIBE queries the challenge slot in the IBE experiment;
WinIBE is the event where AIBE wins in the IBE experiment; WinEtFHyb is the event where
Ano-thresh

EtF wins in the EtF experiment against the non-threshold hybrid model (Fig. 5.11). The
first inequality follows by construction of AIBE. The following ones follow from elementary
probability theory and from observing that AIBE could query the challenge slot only if that was
among the corrupted set (but this does not occur condition on the success of Ano-thresh

EtF by the
definition of EtF security).

5.8 Blockchain WE versus EtF
In this section we show that an account-based PoS blockchain with sufficiently expressive smart
contracts and an EtF scheme for this blockchain implies a notion of witness encryption on
blockchains, and vice versa. The construction of EtF from BWE is completely straightforward
and natural: encrypt to the witness which is the secret key winning the lottery. The construction
of BWE from EtF is also straightforward but slightly contrived: it requires that we can restrict
the lottery such that only some accounts can win a given role and that the decryptor has access to
a constant fraction of the stake on the blockchain and are willing to bind them for the decryption
operation. The reason why we still prove the result is that it establishes a connection at the
feasibility level. For sufficiently expressive blockchains the techniques allowing to construct EtF
and BWE are the same. To get EtF from simpler techniques than those we need for BWE we
need to do it in the context of very simple blockchains. In addition, the techniques allowing to
get EtF without getting BWE should be such that they prevent the blockchain from having an
expressive smart contract layer added. This seems like a very small loophole, so we believe that
the result shows that there is essentially no assumptions or techniques which allow to construct
EtF which do not also allow to construct BWE. Since BWE superficially looks stronger than EtF
the equivalence helps better justify the strong assumptions for constructing EtF.

Definition 5.8.1 (Blockchain Witness Encryption). Consider PPT algorithms (Gen,Enc,Dec)
in the context of a blockchain ΓV is an BWE-scheme with evolved predicate evolved and a lottery
predicate lottery working as follows:

Setup. (pv, td)← Gen() generates a public value pv and an extraction trapdoor td. Initially
pv is put on B.

Encryption. ct← Enc(B,W,m) takes as input a blockchain B, including the public value, a
PPT function W , the witness recogniser, and a message m. It outputs a ciphertext ct, a
blockchain witness encryption.

Decryption. m/⊥ ← Dec(B̃, ct,w) in input a blockchain state B̃, including the a public value
pv, a ciphertext ct a witness w, it outputs a message m or ⊥.
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Correctness. An BWE-scheme is correct if for honest parties i and j, PPT function W , and
witness w such that W (w) = 1 the following holds with overwhelming probability: if
party i runs ct ← Enc(B,W,m) and party j starts running Dec(B̃, ct,w) in B̃ evolved
from B, then eventually Dec(B̃, ct,w) outputs m.

Security. We establish a game between a challenger C and an adversary A. In section 5.2.1
we described how A and Z execute a blockchain protocol. In addition, we now let the
adversary interact with the challenger in a game GameIND-CPA

Γ,A,Z,E which can be summarized
as follows.

1. (pv, td)← Gen() and put pv on the blockchain.
2. A executes the blockchain protocol Γ together with Z and at some round r chooses

a blockchain B, a function W and two messages m0 and m1 and sends it all to C.
3. C chooses a random bit b and encrypts the message mb with the parameters it received

and sends ct to A.
4. A continues to execute the blockchain until some round r̃ where the blockchain B̃ is

obtained and the A outputs a bit b′.

The adversary wins the game if it succeeds in guessing b with probability notably greater
than one half without W (Extract(td, B̃, ct,W )) = 1.

EtF from BWE.

We first show the trivial direction of getting EtF from BWE. LetΠBWE = (GenBWE,EncBWE,DecBWE)
be an BWE scheme. Recall that one wins the lottery if lottery(B, sl,R, sk) = 1. We construct
a EtF scheme. To encrypt, let W be the function W (w) = lottery(B, sl,R,w) and output
EncBWE(B,W,m). If winning the lottery for (sl,R) then let w be the secret key winning the
lottery and output Dec(B̃, ct,w). The proof is straightforward.

BWE from EtF.

We now show how to construct BWE from EtF. Let (EncEtF,DecEtF) be an EtF scheme. Assume
a blockchain with Turing complete smart contracts which can be programmed to send, receive,
and reject stake. Assume furthermore that if a constant fraction of the stake is moved to an
account then within a polynomial number of slots it will begin winning the lottery with constant
probability.

We assume that the contract C of an account is hardcoded into the account when created
and cannot be changed. We also need to assume that the blockchain reaches all slot numbers
such that there is an independent chance to win at all slot numbers. We also need that only
polynomially many slot numbers are reached in polynomial time. We need that the lottery can
be filtered such that only certain accounts can win a given role. We need that the filtering can
depend on the smart contract put on the account when the account was created.

The construction needs a notion of labelled simulation-sound NIZK proof of knowledge. For
such a scheme there is a label connected to a proof and a proof of instance x and label L cannot
be mauled into a proof of instance x and label L′ ̸= L. This can generically be constructed from
an unlabelled scheme simply by letting the label be part of the instance. Let pv of the BWE
scheme be the CRS of the NIZK and let td be the extraction trapdoor of the BWE scheme.

137



To encrypt proceed as follows.

1. Create a fresh account vk with a smart contract E and with no stake on it. Program E with
W hard-coded and such that E is willing to receive calls of the form (Transfer, π, f, F )
from any other smart contract D. If D has f stake available and π is a proof of knowledge
of w such that W (w) = 1 and with label F , then accept a transfer of f stake from D and
send them to F .

2. Let filter be the filter which only accepts accounts which have no stake initially and which
have smart contracts C of the form that it will only accept stake from the account vk
created by the encryptor above.

3. Use EncEtF to encrypt to roles E at slots 2i + j for i = 1, . . . , κ and j = 1, . . . , κ. Use the
filter filter.

To decrypt create a new account F with a contract accepted by filter. Then use w to transfer
stake to F via E. Note that F is allowed to win the lotteries used in the EtF encryptions. No
matter when the decryption is performed, the slots of the blockchain will eventually reach the
next slot of the form 2i as at most polynomially many slots were reached already. After this
comes κ slots in a row to which the encryptor encrypted using EtF. Each of these is won with a
constant probability. Therefore the probability of not decrypting is negligible.

138



Chapter 6

(Commit-and-Prove) Predictable
Arguments with Privacy

In this chapter we present our results on commit-and-prove predictable arguments with privacy,
first appeared in [124]. The contents of this chapter are taken almost verbatim from [124].

6.1 Introduction
Interactive proofs (IPs) and arguments introduced by Goldwasser, Micali, and Rackoff [109] are
cryptographic protocols that allow a prover to convince a verifier about the veracity of a public
statement x ∈ L, where L is an NP language. The interaction may consist of several rounds of
communication, at the end of which the verifier decides to accept or reject the prover’s claim on
the membership of x in L. There are two properties required for an IP, namely completeness
and soundness. Completeness means that if x ∈ L, the honest prover can always convince
the honest verifier. Soundness means that for x /∈ L no (even unbounded) malicious prover
can convince the honest verifier that x ∈ L. Argument systems are like IPs, except they are
only computationally sound; i.e., it should be computationally hard (and not impossible) for a
malicious prover to convince the verifier that x ∈ L. An interactive proof is called public-coin if
the verifier messages are uniformly and independently random, and private-coin otherwise.

Recently, Faonio, Nielsen and Venturi [79] introduced a new property for argument systems
called predictability. Predictable arguments (PA) are private-coin argument systems where the
answer of the prover can be predicted efficiently, given the honest verifier’s (private) random
coins. The prover in such arguments is deterministic and must be consistent with the unique
accepting transcript throughout the entire protocol. Faonio et al. [79] formalized this notion
and provided several constructions based on various cryptographic assumptions. They also
considered PAs with additional privacy properties, namely a zero-knowledge (ZK) property, and
showed two transformations from PAs into ZK-PAs, the first in the common reference string
(CRS) model, and the second in the non-programmable random oracle (NPRO) model.

6.1.1 Our Contribution
In this paper, we study predictable arguments with privacy properties in more detail. Our results
are three-fold:
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First, we provide a more efficient construction of ZK-PA in the CRS model. Compared to the
generic transformation of [79], the resulting argument is much more efficient although it works
only for a restricted class of languages; i.e., all languages that admit SPHFs. This includes all
algebraic languages described in Section 6.2.1.

Second, we answer an open problem raised in [79] and show how to construct witness indis-
tinguishable PAs (WI-PA) in the plain model by using non-interactive witness indistinguishable
(NIWI) proofs in the plain model. Informally, in order to ensure that the verifier’s challenge in
the first round is well-formed, we force the verifier to provide a NIWI proof for the statement
that “the produced challenge is well-formed”. Witness-indistinguishability follows from the
soundness of the underlying NIWI and the predictability of the argument. Moreover, we provide
a reduction that shows how an adversary breaking the soundness of the WI-PA can be exploited
in order to violate the WI property of the underlying NIWI proof system.

Third, motivated by the fact that predictable argument (even without privacy properties)
is a strong notion 1, we put forward a relaxation of predictable arguments, namely, commit-
and-prove 2 predictable arguments (CPPA) that, except the first message of the prover, all the
prover’s responses can be predicted. We formalize this notion for the language of dynamic
statements of form x = (cm, C, y), where cm is the prover’s first message, and C is an arbitrary
polynomial-size circuit possibly specified by the verifier. In particular, we consider a case where
the prover publishes a first message cm, after which the prover can run an unbounded number
of predictable arguments for different but correlated statements (cm, Ci, yi). In contrast to PAs
for which efficient construction based on standard assumptions (even without ZK) seems out of
reach, we give a construction of ZK-CPPA for any polynomial-size circuit C ∈ P in the NPRO
model using garbled circuits (GC) and oblivious transfer (OT). Our construction is very similar
to the three-round zero-knowledge argument of [92] with the main difference being the reusabil-
ity of the prover’s first message and providing ZK in the non-UC model under milder assumptions.

Applications. To demonstrate the usefulness of (CP)PA with privacy properties, we will give
its application in the context of witness encryption. We consider witness encryption schemes
with a strong notion of privacy for the decryptor, wherein a malicious encryptor should not learn
any information about the decryptor’s witness, even after the decryptor reveals the decrypted
message. Our motivating applications for this scenario are dark pools and over-the-counter
(OTC) markets in which an investor (the encrypting party) is interested to communicate with only
those trading parties (potential decryptors) whose financial conditions satisfy some constraint.
To realize this application, a recent work by Ngo et al. [138] introduced the notion of witness
key agreement (WKA) which allows the two sides to agree on a secret key k, given that the
trading parties hold a witness that satisfies the desired relation. We show in Section 6.6.1 that
the witness encryption (WE) interpretation of our ZK-CPPA construction can be used to realize
this application with an efficiency improvement in some aspects.

1This follows by the fact that predictable arguments and witness encryption (that only exists based on strong
primitives like indistinguishability obfuscation) are equivalent.

2We call our notion commit-and-prove PA because, roughly speaking, a prover first commits to an input (once
and for all) and later proves that an opening for the commitment satisfies some properties of interest. Our name is
also inspired by the phrase “commit-and-prove schemes” used in some papers, e.g., [48].
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6.1.2 Related work
This paper is a follow-up to the work of Faonio et al. [79] that introduced the notion of predictable
arguments of knowledge (PAoK) systems. While PAs are always honest-verifier zero-knowledge,
providing zero-knowledge or even the weaker notion of witness-indistinguishability is quite
challenging. In [79], the authors show a compiler for constructing ZK-PA in the CRS model
and leave the construction of WI-PA in the plain model as an open problem. We answer the
open problem and propose more efficient ZK-PAs in the CRS model. A related work is that of
Bitansky and Choudhuri [34] who recently constructed deterministic-prover ZK arguments for
NP and showed that such arguments imply ZK-PA for NP. Different from [34] who mainly focus
on feasibility results and require strong assumptions (e.g., indistinguishability obfuscation) in
their construction, our work considers practical solutions in the CRS model. In another related
work, Dahari and Lindell [67] studied deterministic-prover honest verifier ZK arguments in the
plain model. In the same work, they also constructed full ZK arguments given that the prover
has access to a pair of witnesses one of which can be used as a basis for the prover’s randomness.
This differs from our ZK-PA construction wherein the prover is “truly deterministic” although at
the cost of requiring a trusted setup. The recent work of [58] introduced the notion of Witness
Maps. A Unique Witness Map (UWM) is a cryptographic notion that maps all the witnesses
for an NP statement to a single witness in a deterministic way. While UWMs can be seen as
deterministic-prover NIWI arguments, they differ from WI-PA in several respects, making the
two concepts incomparable. First, WI-PA does not require a trusted setup in the form of a
common reference string, whereas UWMs are in the CRS model. Second, we consider WI-PA
as an interactive protocol, whereas UWMs are non-interactive. Lastly, although UWMs are
deterministic-prover, they are not necessarily predictable.

6.2 Preliminaries
We refer the reader to Section 2.6 for general notation and the definition of bilinear groups.

6.2.1 Algebraic languages.
We refer to algebraic languages as the set of languages associated to a relation that can be
described by algebraic equations over abelian groups. To be more precise, let gpar be some
global parameters, generated by a probabilistic polynomial-time algorithm setup.gpar which
takes the security parameter λ as input. These global parameters can correspond to the description
of groups involved in the construction and usually includes the description of a bilinear group.
Throughout the paper, we suppose that these global parameters are implicitly given as input to
each algorithm.

Let lpar = (M,θ) be a set of language parameters generated by a polynomial-time algorithm
setup.lpar which takes gpar as input. Here, M : Gℓ 7→ Gn×k and θ : Gℓ 7→ Gn are linear maps
such that their different coefficients are not necessarily in the same algebraic structures. Namely,
in the most common case, given a bilinear group gpar = (p,G1,G2,GT , ê, [1]1 , [2]2), they can
belong to either Zp, G1, G2, or GT as long as the equation θ(x) = M(x) ·w is “well-consistent”.

Formally, for a set Xlpar that defines the underlying domain, we define an algebraic language
Llpar ⊂ Xlpar as

Llpar =
{
x ∈ G

∣∣∣∃w ∈ Zk
p : θ(x) = M(x) ·w

}
. (6.1)
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An algebraic language where M is independent of x and θ is the identity function is called a
linear language.

Finally, we note that algebraic languages are as expressive as generic NP languages. This is
because every binary circuit can be represented by a set of linear equations.

6.2.2 Smooth Projective Hash Function.
Let Llpar be a NP language, parametrized by a language parameter lpar, and Rlpar ⊆ Xlpar be
its corresponding relation. A Smooth projective hash functions (SPHFs, [66]) for Llpar is a
cryptographic primitive with this property that given lpar and a statement x, one can compute a
hash of x in two different ways: either by using a projection key hp and (x,w) ∈ Rlpar as pH←
projhash(lpar; hp, x,w), or by using a hashing key hk and x ∈ Xlpar as H ← hash(lpar; hk, x).
The formal definition of SPHF follows.

Definition 6.2.1. A SPHF for {Llpar} is a tuple of PPT algorithms (setup, hashkg, projkg, hash,
projhash), which are defined as follows:

setup(1λ): Takes in a security parameter λ and generates the global parameters pp together
with the language parameters lpar. We assume that all algorithms have access to pp.

hashkg(lpar): Takes in a language parameter lpar and outputs a hashing key hk.

projkg(lpar; hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs a projection
key hp, possibly depending on x.

hash(lpar; hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs a hash value H.

projhash(lpar; hp, x,w): Takes in a projection key hp, lpar, a statement x, and a witness w for
x ∈ L and outputs a hash value pH.

A SPHF needs to satisfy the following properties:

Correctness. It is required that hash(lpar; hk, x) = projhash(lpar; hp, x,w) for all x ∈ L and
their corresponding witnesses w.

Smoothness. It is required that for any lpar and any x ̸∈ L, the following distributions are
statistically indistinguishable:{

(hp,H) : hk← hashkg(lpar), hp← projkg(lpar; hk, x),H← hash(lpar; hk, x)
}

{
(hp,H) : hk← hashkg(lpar), hp← projkg(lpar; hk, x),H←$ Ω

}
.

where Ω is the set of hash values.
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6.2.3 Predictable Arguments.
Predictable arguments are multi-round interactive protocols where the verifier generates a
challenge (which will be sent to the prover) and at the same time it can predict the prover’s
response to that challenge. Here we recall the formal definition of predictable arguments
(PA) [79]3.

LetRG be a relation generator that takes in a security parameter 1λ and returns a polynomial-
time decidable binary relation Rlpar. For a pair (x,w) ∈ Rlpar, we call x the statement and w
the witness. The set of all possible relations Rlpar that the relation generator RG (for a given
1λ) may output is denoted byRGλ. To make the notation simple, we assume thatRlpar can be
described with a language parameter lpar by which λ can be deduced as well.

Definition 6.2.2 (Predictable Argument (PA)). A predictable argument for a relationRlpar (with
the corresponding language parameter lpar) is an interactive protocol between a prover P and a
verifier V, which can be specified by two algorithms Πpa = (Chall,Resp) defined as follows:

(Executed by V): (c, b)← Chall(lpar, x). The algorithm takes in lpar and a statement x, and
returns a challenge c along with a predicted answer b.

(Executed by P): a ← Resp(lpar, x,w, c). The algorithm takes in lpar, a pair of statement-
witness (x,w) and a challenge c, and returns an answer a.

(Executed by V): If a = b, V returns acc; otherwise it returns rej.

We denote by ⟨P(lpar, x,w),V(lpar, x)⟩ an execution between P and V with common inputs
(lpar, x) and prover’s secret input w. The success of the prover in convincing the verifier is
denoted by ⟨P(lpar, x,w),V(lpar, x)⟩ = acc. Also, we may call (c, b) as both the output of
Chall(), or the output of V running Chall(). The same convention holds for a.

We require two properties for a PA: completeness and soundness.

• (Perfect) Completeness. A predictable argument has perfect completeness if for all
λ ∈ N, for allRlpar ∈ RGλ, and for all (x,w) ∈ Rlpar

Pr
[
a = b : (c, b)← Chall(lpar, x); a← Resp(lpar, x,w, c)

]
= 1

• ϵ-Soundness. For all λ ∈ N, all x /∈ Llpar, and all PPT adversaries A

Pr
[
a = b : Rlpar ←$RGλ; (c, b)← Chall(lpar, x); a← A(lpar, x, c)

]
≈λ ϵ

We call a PA sound if ϵ ∈ negl(λ). A PA is secure if it is complete and sound. Furthermore,
we say that a PA is zero-knowledge (ZK-PA) if there exists a PPT algorithm Sim that computes
the predicted answer of any valid statement x without knowing the random coins used in
Chall() nor any witness for x, but only knowing the challenge c. In the case of ZK in the CRS
model, the algorithm takes in also a CRS trapdoor τ which is generated by a setup algorithm
(CRSτ , τ) ← setup(1λ). For notational simplicity, we assume that in this case lpar contains
CRSτ as well.

3We define PAs as one-round protocols. As shown in [79], this is without loss of generality as every ρ-round
PA can be squeezed into a one-round PA.
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Zero-Knowledge
(CRSτ , τ)← setup(1λ); (x,w, c)← A(CRSτ , τ);

if Rlpar(x,w) = 0, then return 0;

b←$ {0, 1}; if b = 0 then a← Resp(lpar, x,w, c); else a← Sim(lpar, x, τ, c);

b′ ← A(a);
return b = b′;

Figure 6.1: Experiment for the definition of Zero-knowledge

• Zero-Knowledge. A predictable argument Π is zero-knowledge if there exists a PPT
simulator Sim such that for all PPT adversary A, Pr[ExpzkΠ,Sim(A, λ) = 1] ≈λ

1
2
, where

ExpzkΠ,Sim(A, λ) is depicted in Fig. 6.1.

In this work, we also consider a weaker version of zero-knowledge, called witness indistin-
guishability (WI) [83] which informally states that the adversarial verifier cannot identify which
witnesses are held by the prover.

• Witness-Indistinguishability. A predictable argument Π is statistically witness indistin-
guishable if for any adversary A, for any common statement x, for any witnesses w1,w2

such that (x,w1) ∈ Rlpar, (x,w2) ∈ Rlpar, the following holds:

⟨P(lpar, x,w1),A(lpar, x)⟩ ≈λ ⟨P(lpar, x,w2),A(lpar, x)⟩

6.2.4 Oblivious Transfer and Garbling Schemes
We refer the reader to Sections 5.2.3 and 5.2.4 for formal definitions of oblivious transfer
protocols and garbling schemes. For our construction in this section, we additionally require a
property for oblivious transfers called sender-extractability in [92], which informally states that
the randomness of the sender is sufficient to reconstruct its input with high probability.

• Sender-Extractability. For any security parameter λ ∈ N, for any b ∈ {0, 1}, for any
messages (x0, x1), where xl ∈ {0, 1}poly(λ) for l ∈ {0, 1}, there exist a PPT algorithm
Ext such that for mR ← ΠR

OT(b; r
R), and mS ← ΠS

OT(m
R, (x0, x1); rS), where rR, rS ∈

{0, 1}poly(λ), we have

Pr
[
(x̄0, x̄1) ̸= (x0, x1) : (x̄0, x̄1)← Ext(mR,mS, rS)

]
≈λ 0

6.3 TSPHF-based ZK-PAs in the CRS model
As shown in [79], PAs can be constructed from SPHFs, but since the projection key in SPHFs can
be generated in a malicious way, they can provide only honest-verifier zero-knowledge property
and it is not clear how to construct ZK-PA from standard SPHFs directly. Benhamouda et al. [31]
defined the notion of trapdoor SPHFs (TSPHFs) as an extension of SPHF in which one can
verify the correctness of the projection key generation. More in details, a TSPHF comes with
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• Setup(1λ): Run (CRSτ , τ)← tsetup(1λ) and return (CRSτ , τ).

• Chall(lpar, x):

– Run hk←$ hashkg(lpar) and hp← projkg(lpar; hk, x).
– Compute H← hash(lpar; hk, x).
– Return (c, b) := (hp,H).

• Resp(lpar, x,w, c): For c := hp, check if verHP(CRSτ , hp) = 1, then run pH ←
projhash(lpar; hp, x,w) and return a := pH.

• Sim(lpar, x, τ, c): Parse c := hp and return tH← thash(lpar; hp, x, τ).

Figure 6.2: ZK-PA Πzkpa from TSPHFs.

three additional algorithms (tsetup, verHP, thash). tsetup outputs a CRS CRSτ with a trapdoor
τ . The trapdoor τ can be used by thash to compute the hash value of any statement x (only by
knowing public hp). The algorithm verHP takes in a key hp and the CRS CRSτ , and outputs 1 if
hp is a valid projection key. The properties a TSPHF must verify are the same as SPHF, except
the smoothness property is no longer statistical but computational as hp should now contain
enough information to compute the hash of any statement. Moreover, a TSPHF should satisfy
zero-knowledge property which informally states that for any statement x with valid witness
w, the projected hash value pH← projhash(lpar; hp, x,w) should be indistinguishable from the
trapdoor hash value tH ← thash(lpar; hp, x, τ). For a more formal definition of TSPHFs, We
refer the reader to [31].

In this section, we show the connection between ZK-PAs and TSPHFs [30], namely we
construct ZK-PA for a relationRlpar given a TSPHF for the same relation. Different from [79],
the relation Rlpar here is identical. This is because [79] considers the connection for the
knowledge-sound PAs (and extractable SPHFs) whereas here we only consider soundness and
(computational) smoothness. As a direct result of this, we obtain ZK-PA for all languages that
admit TSPHFs (i.e., algebraic languages).

Construction of ZK-PA from TSPHFs.

We are now ready to present our construction of ZK-PAs from TSPHFs. Let Πtsphf = (setup,
tsetup, hashkg, projkg, hash, projhash, verHP, thash) be a TSPHF for Llpar. The construction of
Πzkpa = (Setup,Chall,Resp, Sim) in the CRS model is given in Fig. 6.2.

Theorem 6.3.1. If the TSPHF Πtsphf is correct, (computationally) smooth and zero-knowledge,
then Πzkpa in Fig. 6.2 is secure and zero-knowledge.

Proof. The correctness of Πzkpa is trivial and follows directly from the correctness of the TSPHF.
Here we only give a sketch of the proofs for soundness and ZK.
(Soundness). To show soundness, let A be a PPT adversary that breaks the soundness, i.e., A
outputs the predicted answer for a chosen x ̸∈ Llpar with non-negligible probability. We construct
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a PPT algorithm B that breaks the smoothness of the underlying TSPHF. Given (hp,H) as input,
B proceeds as follows: it first runs A on the security parameters to receive x. Next, it runs A on
input (x, hp) and receives the answer a. Now depending on whether a = H or not, B can decide
if H is a hash value or random. This breaks the smoothness property.
(ZK). The ZK property can be shown by a straightforward reduction to the ZK property of
the underlying TSPHF. To do so, let A be an efficient adversary against the ZK property of
Πzkpa. We construct an efficient algorithm B against the ZK property of Πtsphf as follows: B
runs (CRSτ , τ) ← setup(1λ) and sends (CRSτ , τ) to A. Upon receiving (x,w, c) from A, B
sends the same tuple (x,w, c) to the challenger. Given the challenge a, B finally runs A(a) and
return the same guess as A. It is easy to see that B can now distinguish a real answer from a
simulated one with the same advantage as A’s advantage. This completes the proof.

Instantiation and Efficiency Evaluation. Given the above connection, one can now obtain a
secure ZK-PA for any algebraic language Llpar with lpar = (M,θ) (see Eq. (6.1)) in the bilinear
setting based on the efficient construction of TSPHF in [30]. For the sake of completeness, we
provide the construction in Fig. 6.3. The resulting ZK-PA is sound under the DDH assumption
in G2 (See [30], Appendix E.3 for the security proof). To evaluate efficiency, we note that
compared to the original construction of ZK-PA in [79], the above construction is more efficient
as it only has one more group element in the challenge c (compared to the non-zk construction
of PA), whereas the idea of adding a NIZK proof for the well-formedness of c in [79] has at least
a linear overhead in the size of c 4.

• Setup(1λ): τ ←$ Zp; return (CRSτ = [τ ]2 , τ).

• Chall(lpar,x): α ←$ Zn
p ; [γ]1 ← α⊤ [M(x)]1; [ξ]2 ← α [τ ]2 ; c ← ([γ]1 , [ξ]2); b ←

ê(α⊤ [θ(x)]1 , [1]2); return (c, b).

• Resp(lpar,x,w, c): parse c as ([γ]1 , [ξ]2); if ([ξ]2 ̸∈ Gn
2 ∨ ê([γ]1 ,CRSτ ) ̸=

ê([M]1 , [ξ]2)) return ⊥; else return a← ê([γ]1w, [1]2).

• Sim(lpar,x, τ, c): parse c as ([γ]1 , [ξ]2); return τ−1ê([θ(x)]1 , [ξ]2).

Figure 6.3: Construction of ZK-PA from [30].

Remark 6.3.2 (Non-Blackbox Construction in the plain model). Recently, Abdolmaleki et al. [6]
show how one can use non-blackbox techniques to construct a subversion-resistant variant of
smooth projective hash functions. Following a similar approach directly yields the construction
of ZK-PA in the plain model, thus giving another way to circumvent the [105] impossibility using
non-blackbox techniques. The key idea is to rely on the existence of an efficient (non-blackbox)
extractor that—after checking the well-formedness of c— can extract a function of the verifier’s
randomness (e.g., [α]2) by which one can efficiently compute the predictable answer b.
Remark 6.3.3. In their recent work, Bitansky and Choudhuri [34] also construct ZK-PA for all
NP. Their construction, however, mainly focuses on a feasibility result rather than efficiency,

4Here we are assuming that the security of the construction should remain under standard and falsifiable
assumptions as it is easy to construct succinct NIZKs based on non-falsifiable assumptions.
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and requires strong assumptions such as indistinguishability obfuscation. Moreover, while the
zero-knowledge simulator in their construction is non-black-box which is inherent in the plain
model, we rather focus on more efficient constructions in the CRS model.

6.4 Witness-Indistinguishable Predictable Arguments
Due to a classical impossibility result [105], a prerequisite for constructing 2-message ZK
proof systems based on black-box techniques is a common reference string (CRS)—a string
generated by a trusted party to which both prover and verifier have access. Requiring such a trust
model may however be overkill for some applications where a weaker notion of privacy such as
witness indistinguishability (WI) is sufficient. Weaker than ZK property, this property states
that for any two possible witnesses w1,w2, an adversary cannot distinguish proofs generated
by w1 from the proofs generated by w2. Given a PA Πpa = (Chall,Resp) for an NP language
L, we show how to construct a WI-PA Πwipa = (Chall′,Resp′) for the same language. At first it
may seem that regardless of which witness is used by the prover when running Resp, it has the
same functionality since all the witnesses return the same (predicted) answer. This argument is
however not true: while for an honestly-generate challenge, Resp behaves the same regardless
of which valid witness is used, this might not be true for maliciously generated challenges. To
circumvent this issue, the key idea is to require the verifier to prove that the challenge is indeed
generated from a proper run of Chall with some randomness. This should be done without
breaking the soundness, meaning the secret coins of the verifier should be kept hidden from the
prover. To this end, we will use a NIWI proof system as an ingredient, through which the verifier
proves the following statement: there exists a random string α, such that c = Chall(lpar, x;α).
The prover first checks if the NIWI proof verifies and if so, computes the predicted answer as
before.

Since we use a NIWI proof system in the plain model as an ingredient of our construction,
below we recall the definition of WI for such proof systems. We note that a construction of NIWI
in the plain model for all NP languages and based on standard assumptions is presented in [118].

Definition 6.4.1. Let Πniwi = (Pniwi,Vniwi) be a non-interactive proof system for a language Llpar.
We say that Πniwi is computationally witness-indistinguishable if for all (x,w1,w2) such that
(x,w1) ∈ Rlpar and (x,w2) ∈ Rlpar, and for all PPT adversaries A,

Pr
[
A(π) = 1 : π ← Pniwi(lpar, x,w1)

]
≈λ Pr

[
A(π) = 1 : π ← Pniwi(lpar, x,w2)

]
6.4.1 Our Construction
Let Πpa = (Chall,Resp) be a predictable argument for language Llpar, and Πniwi be a non-
interactive computational WI proof system in the plain model for the language of statements c for
which there existsα such that c = Chall(lpar, x;α). We construct a WI-PAΠwipa = (Chall′,Resp′)
for Llpar as depicted in Fig. 6.4. The completeness of the construction follows straightforwardly
from the completeness of Πpa. We prove soundness and WI in the next theorem.

Theorem 6.4.2. The construction in Fig. 6.4 is a statistical witness-indistinguishable predictable
argument in the plain model.
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• Chall′(lpar, x): the verifier computes (c, b)← Chall(lpar, x;α) and sends the challenge
c along with a NIWI proof π for the existence of α such that c is the first output of
Chall(lpar, x;α).

• Resp′(lpar, x,w, c, π): the prover first checks the NIWI proof π. If π verifies, the
prover computes a← Resp(lpar, x,w, c) and returns a.

Figure 6.4: Construction of WI-PA

Proof. Soundness. Let x /∈ Llpar and A be an efficient adversary that breaks soundness of Πwipa

by convincing the honest verifier V with non-negligible probability ε. I.e., ε(n) ≥ 1
p(n)

for some
polynomial p and for infinitely many n’s. Denoting this set by N , we restrict ourselves to n ∈ N
from now on. This indicates that there exists a first message c from V on which A convinces V
withprobability at least ε. Fix this challenge c and the corresponding answer b computed by V.
Define a set S as follows:

S =
{
b : Pr

[
A(lpar, x, c) = b|(c, b)← Chall(lpar, x)

]
≥ ε

2

}
Fix some b0 ∈ S and define S0 ⊆ S as

S0 =
{
b ∈ S : Pr

[
A(lpar, x, c) = b|(c, b0)← Chall(lpar, x)

]
≥ ε

4

}
.

Since b0 ∈ S, we have that Pr
[
A(lpar, x, c) = b0|(c, b0) ← Chall(lpar, x)

]
≥ ε

2
and therefore

|S0| · ε4 ≤ 1− ε
2
, which consequently implies that |S0| ≤ 4

ε
. Now, the fact that ε is non-negligible

indicates that S0 is bounded by a polynomial. On the other hand, we have that Pr[b ∈ S] ≥ ε
2
,

and that S is exponential in the security parameter λ. This means that there should exist b1 ∈ S
such that b1 /∈ S0. We now construct a non-uniform PPT adversary B that breaks the witness-
indistinguishability of Πniwi. Let aux = (α0, α1, b0, b1) be such that (c, b0)← Chall(lpar, x;α0)
and (c, b1) ← Chall(lpar, x;α1). Given aux as advice, B proceeds as follows: it first returns
(c, (b0, α0), (b1, α1)) to the WI challenger and obtains a proof π. Next, B calls A on input (π, c)
and returns i when it receives bi from A. Note that for π that is computed using (r0, b0), A
returns b1 with probability at most ε

4
, whereas for π computed by (r1, b1), A returns b1 with

probability at least ε
2
. This makes B a successful adversary in breaking WI.

WI. Let V∗ be an adversary against WI property of Πwipa and (x,w1,w2) be such that
(x,w1), (x,w2) ∈ Rlpar. It follows from (statistical) soundness of the NIWI proof that V∗’s first
message is computed correctly with overwhelming probability. This together with predictability
of the argument indicates that the answer from the prover is unique regardless of which witness
is used and thus completes the proof.

6.5 Commit-and-Prove Predictable Arguments
We study a relaxed notion of predictability in interactive argument systems which consists of
two phases: In phase 1 (commitment phase), the prover commits to its witness once for all and
sends the commitment to the verifier. In phase 2 (challenge-response phase), the prover and the
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verifier engage in a predictable argument protocol, where the verifier’s challenges may depend
on the commitment in such a way that the prover’s responses can be predicted by the verifier.
The type of relations we consider are of the following form: a statement x = (cm, C, y) and a
witness (w, d) are in the relation (i.e., (x, (w, d)) ∈ R) iff “cm commits to w by randomness d,
and C(w) = y”. Here C is a circuit in some polynomial-size circuit class C and y is the expected
output of the circuit.

Definition 6.5.1 (Commit-and-Prove Predictable Arguments). Let C be a class of polynomial-
sized circuits. A commit-and-prove predictable argument for C is a multi-round protocol (between
a prover P and a verifier V) which consists of three algorithms Πcppa = (Commit,Chall,Resp):

Commitment phase (executed by P): cm ← Commit(w; d) on input a value w, generates a
commitment cm by using some randomness d.

Interaction phase. Each round proceeds as follows:

• (Executed by V): (c, b)← Chall(cm, C, y) on input a statement (cm, C, y) such that
C ∈ C, generates a challenge c and a predicted answer b.

• (Executed by P): a ← Resp(cm, C,w, d, c) on input a commitment cm, a circuit
C ∈ C, the committed value w, the randomness d, returns a response a.

V accepts the proof iff a = b in all rounds.

We call a CPPA as a ρ-round CPPA if the interaction phase consists of ρ rounds. A CPPA
should satisfy completeness and soundness as defined below:

(Perfect) Completeness. An honest prover with a statement x = (cm, C, y) and witness (w, d)
such that (w, d) opens the commitment (i.e., cm = Commit(w; d)), and C(w) = y can
always convince the verifier with overwhelming probability. More precisely, a CPPA has
perfect completeness if for allλ ∈ N, for allC ∈ C, and for all (x = (cm, C, y), (w, d)) ∈ R

Pr
[
a = b : (c, b)← Chall(cm, C, y); a← Resp(cm, C,w, d, c)

]
= 1

ϵ-Soundness. For all λ ∈ N, and all (stateful) PPT adversaries A = (A1,A2)

Pr

[
a = b ∧

C(w) ̸= y
:

(w, d, C, y)← A1(1
λ); cm← Commit(w; d)

(c, b)← Chall(cm, C, y); a← A2(w, d, C, y, c)

]
≈λ ϵ

We call a CPPA sound if ϵ ∈ negl(λ). A CPPA is secure if it is correct and sound. Similar
to PAs, one can show that CPPAs can also be made extremely laconic in terms of both round
complexity and proof complexity. Specifically, the same technique in [79] can be used to collapse
any ρ-round CPPA into a single round CPPA.

In this work, we only focus on CPPA protocols with the zero-knowledge property. A CPPA
is zero-knowledge (ZK-CPPA) if there exists a PPT algorithm Sim that computes the predicted
answer of any valid statement x without knowing the random coins used by Chall() nor any
witness for x, but only knowing the challenge c. Since our construction of ZK-CPPA is in the
non-programmable random oracle (NPRO) model, we define this property in this model.
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Definition 6.5.2 (Zero-knowledge CPPA in the NPRO model). We say that a CPPA (Commit,Chall,Resp)
for a class of circuits C satisfies the zero-knowledge property in the NPRO model if for any PPT
adversary A, there exists a PPT simulator Sim such that for all PPT distinguisher D, for all
(x,w) ∈ R, and all auxiliary inputs z ∈ {0, 1}∗, we have:

max
D,z

∣∣∣Pr[DH(x, τ, z) = 1 : τ ← (PH(x,w) ⇆ AH(x, z))]

− Pr[DH(x, τ, z) = 1 : τ ← SimH(x, z)]
∣∣∣ ≤ negl(|x|)

Where P and A are respectively the prover and the (malicious) verifier running the CPPA
protocol, and PH(x,w) ⇆ AH(x, z) denotes the random variable corresponding to a protocol
transcript on input (x,w).

We now give our construction of ZK-CPPA for all polynomial-size circuits P in the NPRO
model. The construction is similar to the three-round ZK protocol of [92], with the difference
that the first message in our protocol is reusable. Moreover, here we only focus on providing ZK
property as defined above, whereas the construction of [92] shows ZK in the UC model.

6.5.1 ZK-CPPA based on garbled circuits and oblivious transfer
Let GC = (Garble,Encode,Eval,Decode,Verify) be a garbled circuit with correctness, authen-
ticity, and verifiability, and ΠOT = (ΠR

OT,Π
S
OT,Π

O
OT) be a sender-extractable oblivious transfer

protocol that realizes FOT. At a high level, the construction proceeds as follows. The prover P
with witness w = (w1, . . . ,wn) ∈ {0, 1}n plays the role of the receiver in n instances of the OT
protocol and commits to its witness bits by providing wj as input to the j-th instance of ΠOT.
Let mR

j ← ΠR
OT(wj; r

R
j ) and define cm and d as the set of {mR

j }j∈[n] and {rRj }j∈[n], respectively.
For a circuit-value pair (C, y) of the verifier’s choice, let Ĉ be a circuit that realizes the following
relation R: R(x = (cm, C, y), (w, d)) = 1 iff (w, d) open cm and C(w) = y. The verifier V
constructs a GC C for Ĉ and sends it along with the second message of the OT as the challenge
c. Moreover, V sets the predicted answer b to be the output 1-key k1 of the final gate in the
circuit. Now, P with a valid witness (w, d) evaluates C and sends the obtained garbled output
a = k1 as the predicted answer. It is not hard to see that this construction results in a CPPA. To
additionally ensure ZK property, we follow the same approach as [92] by enforcing V to also
provide a ciphertext ct = H(k1)⊕ r, where H is a random oracle and r is the randomness used
by V to produce the second message of the OT. When P computes k1, she first recovers r and then
computes all the labels by executing the extractor Ext guaranteed by the sender-extractability
property. Finally, P verifies if the garbled circuit has been constructed correctly and if so, she
sends the predicted answer a = k1 to V. The resulting protocol Πcppa is described in Fig. 6.5.
The proof idea is similar in spirit to the proof of Theorem 4.2 in [92]. We give a proof sketch
here.

Theorem 6.5.3. Let GC be a correct, authentic, and verifiable garbling scheme, ΠOT be a
sender-extractable OT protocol that securely implements FOT, and H be a random oracle.
The protocol Πcppa in Fig. 6.5 is a secure and zero-knowledge commit-and-prove predictable
argument as defined in Definitions 6.5.1 and 6.5.2.

Sketch. Completeness follows straightforwardly by the correctness property of the underlying
OT and the garbling scheme.
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In order to show soundness, let us consider a PPT adversary A = (A1,A2) and assume that
(w, d, C, y) is a tuple returned byA1 that corresponds to a false statement. That is, x = (cm, C, y),
where cm = Commit(w; d) and C(w) ̸= y. We show that for (c, b) ← Chall(cm, C, y), if A2

having c can compute the predicted answer b, then one can either break the sender security of
the underlying OT protocol, or the authenticity of the garbling scheme. To show this reduction,
we first note that b is the correct label k1. Now, given that C(w) ̸= y, there can be two cases
where A2 can output k1 with non-negligible probability. In the first case, A2 outputs k1 by the
ability of computing invalid labels k1−wj

j that does not correspond to its committed value. It is
not hard to see that such A2 can be used to break OT sender security. The reduction B proceeds
as follows: B first computes a garbled circuit C and sends the labels to the OT challenger. Next,
it extracts A2’s input w and forwards it as the choice bits of the receiver. The OT challenger
computes the sender’s message either by invoking a real sender, or by invoking the simulator,
and sends it to the reduction who further forwards to A2 together with C and a random T . Now,
since A2 can compute k1 only in the real execution of ΠOT, a successful A2 with non-negligible
probability ϵ implies that B can distinguish the real and simulated view of the OT protocol with
probability at least ϵ. In the second case, where A2 does not use invalid labels but computes the
correct k1, it is straightforward to construct an adversary B that breaks the authenticity of the
underlying garbling scheme by forging k1 for a given garbled circuit C.

We now argue that Πcppa is zero-knowledge in the NPRO model. Let V∗ be a PPT adversary
against the ZK property. We construct an efficient simulator Sim that simulates the protocol
as follows. Sim observes V∗’s calls to the random oracle, so that for every query H(u) made
by V∗, Sim records u in a set L. To simulate the first message, Sim invokes the simulator of
ΠOT for the corrupt receiver. Upon receiving V∗’s message c, Sim parses c as (C, {mS

j }j∈[n], T )
and defines the set R̃ = {H(u) ⊕ T |u ∈ L}. For any r ∈ R̃ parsed as r = r1|| . . . ||rn, Sim
computes (k0

j , k
1
j )← Ext(mR

j ,m
S
j , r

S
j ) for j ∈ [n] and checks if Verify(Ĉ,C, {k0

j , k
1
j}j∈[n]) = 1.

If there exists such r ∈ R̃, the simulator sends Y to V∗, where Y ∈ L is so that r = H(Y )⊕ T .
Otherwise, Sim aborts the protocol. It should be clear that the output of the simulator is perfectly
indistinguishable from the real distribution. This completes the proof.

6.6 Applications: Witness Encryption with Decryptor
Privacy

Besides being a notion of theoretical interest, we also show the applications of (commit-and-
prove) predictable arguments with zero-knowledge or witness-indistinguishability property in
the context of witness encryption. Witness encryption (WE) is a powerful notion of encryption
introduced by Garg et al. [98]. A WE scheme for an NP relation Rlpar allows to encrypt a
message m with respect to a statement x as ct ← WE.Enc(lpar,m, x). The ciphertext can be
decrypted as m← WE.Dec(ct,w) for any w such that (x,w) ∈ Rlpar. Security guarantees that
no adversary should learn any non-trivial information about m if x ̸∈ Llpar, where Llpar is the
language corresponding toRlpar. More formally, we say that a WE is secure if it is complete and
sound as defined below:

• Completeness. A WE has completeness if for all λ ∈ N, for allRlpar ∈ RGλ, for all m,
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• Oracles and Primitives: A correct, authentic, and verifiable garbling scheme
GC = (Garble,Encode,Eval,Decode), a sender-extractable 2-round OT ΠOT, and a
hash function H : {0, 1}∗ → {0, 1}poly(λ) modeled as a random oracle.

• P’s private input: w ∈ {0, 1}n, where n = poly(λ).

• Commitment Phase: P plays the role of the receiver in n instances of ΠOT and
computes (cm, d) as follows:

1. Sample uniformly random rRj from {0, 1}λ, and compute mR
j ← ΠR

OT(wj; r
R
j )

for j ∈ [n].
2. Define cm = {mR

j }j∈[n] and d = {rRj }j∈[n].

• Common inputs: A security parameter λ, and a statement x = (cm, C, y), where C is
a polynomial-size circuit.

• Challenge: Let Ĉ be a circuit that realizes the following relation R: R(x =
(cm, C, y), (w, d)) = 1 iff (w, d) opens cm and C(w) = y. V plays the role of the
sender in n instances of ΠOT and computes a pair (c, b) of challenge-predicted answer
as follows:

1. Compute (C, e, d) ← Garble(1λ, Ĉ), where e := {k0
j , k

1
j}j∈[n], and d :=

(k0, k1).
2. For j ∈ [n], sample uniformly random rSj from {0, 1}λ, and compute mS

j =
ΠS

OT(k
0
j , k

1
j ,m

R
j ; r

S
j ).

3. Compute T = H(k1)⊕ rS , where rS = rS1 || . . . ||rSn .
4. Define c = (C, {mS

j }j∈[n], T ) and b = k1, and send c to P.

• Response: P proceeds as follows:

1. Execute kwj

j = ΠO
OT(m

S
j ,wj, r

R
j ) for j ∈ [n].

2. Execute Y = Eval(C, {kwj

j }j∈[n]).
3. Recover rS = H(Y )⊕ T , and parse rS = rS1 || . . . ||rSn .
4. Reconstruct sender’s inputs (k0

j , k
1
j ) ← Ext(mR

j ,m
S
j , r

S
j ) for j ∈ [n]. Abort if

the extractor fails for some j ∈ [n].
5. Send the predicted answer a = Y if Verify(Ĉ,C, {k0

j , k
1
j}j∈[n]) = 1; and abort

otherwise.

• V accepts the proof iff a = b.

Figure 6.5: ZK-CPPA Πcppa based on GC and OT

and for all (x,w) ∈ Rlpar

Pr[Dec(Enc(lpar, x,m),w) = m] ≥ 1− negl(λ)
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E with private inputs (x,m) D with private inputs w
−−−−−−−−−−−−→
←−−−−−−−−−−−−

. . .
Output: ⊥ Output: m if (x,w) ∈ Rlpar

Figure 6.6: Functionality of a WE scheme with decryptor privacy for a relationRlpar

If the probability is 1, we say WE is perfectly complete.

• Soundness. A WE has soundness if for all λ ∈ N and all PPT adversaries A, there exists
a negligible function negl(λ) such that for any m0,m1

Pr

[
Rlpar ←$RGλ; x← A(lpar); b←$ {0, 1};
ct← Enc(lpar, x,mb); b

′ ← A(lpar, x, ct)
:
b = b′ ∧ x ̸∈ Llpar

∧|m0| = |m1|

]
≈λ negl(λ)

While being a very powerful notion, existing constructions of WE are not satisfactory, as they
are either based on strong assumptions such as indistinguishability obfuscation and multilinear
maps [61, 97, 98, 111], or based on new and unexplored algebraic structures [18].

As noted in [79], predictable arguments imply witness encryption as one can encrypt a bit m
by generating a challenge-answer pair (c, b) for the PA and define the ciphertext as (c, b⊕m).
Viceversa, a PA can be constructed from WE by encrypting a random bit m and then asking
the prover to return m. Furthermore, it is not hard to show that commit-and-prove predictable
arguments are also equivalent to a variant of witness encryption studied in [29, 49]. It is therefore
interesting to see the applications of predictable arguments with privacy in the context of witness
encryption. While the standard definition of witness encryption requires the above properties,
for some applications explained below, we may require some level of privacy for the decryptor
as well. In other words, we may ask for a WE scheme that mimics the following functionality
(See Fig. 6.6): the functionality is parameterized by a message spaceM and an NP relation
Rlpar. An encryptor E with private inputs m ∈M and bitstring x interacts with a decryptor D
with private input w, at the end of which D outputs m iff (x,w) ∈ R. Note that this is different
from standard WE wherein the decryptor aims to obtain the message internally without revealing
it to the environment. Here instead, the decrypted message is revealed to the encryptor which
may break the privacy of the decryptor.

Since the encryptor knows the plaintext when running the encryption algorithm, one may
wonder how the decrypted message can leak some information about the decryptor’s witness. To
clarify this, let us consider a WE scheme for a concrete disjunction language defined as follows:
the language parameter lpar = (G, g, pk) includes a group G of order p with generator g, and an
ElGamal public key pk. A statement x is in the language iff x is the ElGamal encryption of a bit
under pk. More formally, for lpar = (G, g, pk), we define

Llpar =
{
x | ∃r ∈ Zp,∃b ∈ {0, 1} : x = (gr, pkrgb)

}
We denote the witness for x = (gr, pkrgb) as w = (r, b). Using generic techniques for the
disjunctions of languages( [2, 121]), one can encrypt a message m ∈ G under a statement
x = (x0, x1) as follows:

153



1. select α0, α1, α2, α3 ←$ Zp.

2. compute aux0 = gα0pkα1 , aux1 = gα1xα2
0 ( x1

g
)α3 and aux2 = gα2pkα3 . Define aux =

(aux0, aux1, aux2).

3. compute π = xα0
0 xα1

1 and π̃ = πxα0
0 ( x1

g
)α1gα1 . Define ct = πm.

4. return ct = (c, aux, π̃).

Having a witness w = (r, 0) for x = (gr, pkr), one can decrypt the ciphertext by first computing
π = auxr0 and then recovering the message by computing π−1ct. On the other hand, if the
decryptor has a witness w = (r, 1) for x = (gr, pkrg), he first obtains π from dividing π̃ by
auxr0aux

1
1aux

−r
2 = xα0

0 ( x1
g
)α1gα1 and then computes m = π−1ct as before. While for an honestly

generated ciphertext ct, this construction does not leak any information about the witness, it is
not hard to see that a malicious encryptor can learn part of the witness (and thus distinguish
them) by simply defining π̃ to be a random group element. In this case (i.e., b = 1), the decryptor
fails to decrypt m correctly, hence making the two cases b = 0 and b = 1 distinguishable for the
encryptor.

6.6.1 Application: Dark Pools
We now justify our model of WE with decryptor privacy. In our model, we are assuming that the
decryptor D sends back the decrypted message to the encryptor E whereas in all previous works,
the communication is non-interactive (i.e., “one-shot”) in the sense that there is only one message
ct from E to D. Our motivating applications are dark pools and over-the-counter markets. Dark
pools are anonymized trading platforms that allow parties to place invisible orders such that
each party can only know their own orders. Such pools allow the investors to communicate only
to those whose transaction conditions satisfy some constraints. At the same time, they should
also guarantee that investors do not learn any information about traders’ secret information.

In a recent work, Ngo et al. [138] introduced a new cryptographic primitive called Witness
Key Agreement (WKA) as a tool to make this possible. In the dark pool scenario, a WKA allows
a party E to securely agree on a secret key with another party D who owns a secret witness
satisfying some arithmetic relation. More precisely, in the presence of a public bulletin board
or a public blockchain, a WKA addresses the following problem: given n parties who have
committed to their secret inputs w, and published the commitments cm anonymously on the
blockchain, an investor E wants to agree on a key k with any party whose committed secret w
satisfies some relation; i.e., C(w) = y, where C is an arbitrary arithmetic circuit specified by E.
Similar to NP relations defined in Section 6.5, one can set x = (cm, C, y) and letR be defined
such that R(x, (w, d)) = 1 iff cm commits to w (with decommitment d) and C(w) = y. Once
the secret key k is recovered by the legitimate party (i.e., any party with valid witness (w, d) such
thatR(x, (d,w)) = 1), they together with the investor can secure their communication from any
external party by using k.

We now demonstrate how our construction of ZK-CPPA can be used as a drop-in replacement
for a witness key agreement. At a high level, the protocol proceeds as follows. All parties first
commit to their secret values w via cm← Commit(w; d), and publish the resulting commitments
cm. Later, an investor who wish to communicate only with participants whose secret satisfy
C(w) = y (for some arbitrarily chosen circuit C and value y) considers the following relation:
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R(x = (cm, C, y), (w, d)) = 1 iff C(w) = y, and cm = Commit(w; d). Let us assume that
xi = (cmi, C, y) is the statement corresponding to party i. The investor now encrypts the secret
key k under all such statements xi 5. It is not hard to see that only the prover with the valid
witness (wi, di) can decrypt the ciphertext. Moreover, since the construction is ZK, the decrypted
message k says nothing about (wi, di), even if the ciphertext is generated maliciously.

Efficiency and Comparison with [138]. In [138], the authors propose a WKA construction
based on a type of Succinct Zero-Knowledge Non-Interactive Argument of Knowledge Proof
System (zk-SNARK) from non-interactive linear proof systems (NILP), where the verifier is
designated. The construction at a high-level is as follows. A designated verifier—playing the
role of the investor— first broadcasts a CRS as a challenge for the relationR of interest. Next, a
prover publishes a partial zk-SNARK proof as a response for the committed value that satisfies
R. Finally, the verifier using the partial proof can derive a shared secret key with the prover.

We now compare our proposed construction for WKA with that of [138]. In contrast to our
scheme which is ZK, the construction of [138] only provides honest-verifier ZK. Moreover, the
WKA in [138] requires an expensive trusted setup which should be invoked every time an investor
Ei asks for the preprocessing of a new CRS corresponding to the relationRi of Ei’s interest. On
the other hand, the major downside of our scheme is that the size of the ciphertext grows linearly
with the number of parties in the system as the investor should encrypt the message under every
existing commitment in the system, whereas the size of ciphertext in [138] is independent of the
number of parties. This suggests that there might well be a trade-off between the size of the
ciphertext and the required number of trusted setups and our construction performs better when
the number of parties is small.

5We again emphasize that we see the notions of PA and WE (and their “commit-and-prove” variants)
interchangeably here, as the implication from one to another is straightforward and shown in [79].
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